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EXECUTIVE SUMMARY AND RECOMMENDATIONS 

ES-1. Overview  

The purpose of this report is to describe and explain the benefits of using co-optimization for 
power system generation and transmission planning.  Co-optimization models are computer-
aided decision-support tools that search among possible combinations of generation and 
transmission investments to identify integrated solutions that are “best” in terms of cost or other 
objectives while satisfying all physical, economic, environmental, and policy constraints.  

We review the state of the art in power system expansion planning tools including existing co-
optimization models.  We also summarize data and computational requirements of co-
optimization models, specify design choices to be made in developing them, and describe 
methods for their validation. Three case studies illustrate potential applications and associated 
results of co-optimization and its benefits relative to planning approaches that optimize 
generation alone or transmission alone. Methods to address short-run resource variability and 
long-run uncertainties within co-optimization are described in some depth, given the centrality of 
these topics in planning for the future. Institutional concerns regarding co-optimization are 
explored, including confidentiality, public domain access, and potential roles of states. 

Two central findings are as follows.  First, co-optimization is useful where power utilities are 
vertically integrated because it identifies less costly solutions by considering the tight 
interactions of generation and transmission.  Second, co-optimization is also useful within 
unbundled environments because it facilitates exploration of how generation dispatch and 
investment will respond to changes in transmission capacity, access, and congestion. This helps 
planners to identify grid reinforcements that encourage generation siting decisions that yield the 
lowest overall cost of power production and delivery.  Co-optimization also facilitates integrated 
and simultaneous assessment of all planning alternatives, including supply-side options (bulk and 
distributed generation and storage), demand management, and transmission, so as to identify the 
most economically and environmentally efficient combinations.  

Our findings imply that co-optimization is likely to be highly useful for system expansion 
planning, particularly within the Eastern Interconnection (EI). This is particularly important 
given the large transmission investments that are anticipated to promote interregional power 
trades and renewables integration.  In the near term, there is immense value to applying research-
grade co-optimization tools to the EI or its subsystems. Such studies would be highly beneficial 
because they would (1) further illustrate the benefits of co-optimization for industry-sized 
systems; and (2) facilitate exploration of several model design issues, including treatment of 
uncertainty and deployment on high-performance, paralleled computers. In the longer term, 
consideration should be given to developing commercial co-optimization applications that would 
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incorporate operational constraints and variability to enhance model fidelity while conveniently 
interfacing with existing and newly developed data repositories.  

ES-2. Definition  

We recommend use of the following general definition for co-optimization in this document. 

Co-optimization is the simultaneous identification of two or more classes of 
investment decisions within one optimization strategy.  

Here, “classes of investment decisions,” in the context of electric systems planning, almost 
always include decisions to build generation and transmission.  But they may include other types 
of decisions as well, such as demand-side solutions, decisions to install storage, or building of 
natural gas pipelines.  “One optimization strategy” may consist of a formulation to solve a single 
optimization problem (e.g., minimize cost subject to constraints) or it may consist of a 
formulation to solve an iterative series of optimization problems (i.e., sequential yet coordinated 
generation and transmission planning). 

The above definition is tool-focused; it refers to the operation of a particular kind of 
computational method. But it must be understood in the context of the planning process in which 
it is used.  If co-optimization is used by a vertically integrated utility, then its main result is the 
identification of joint transmission-generation expansion plans that are lower in cost than 
expansion plans would be if transmission and generation plans were developed separately.  
However, co-optimization can also be used within used in utility regions that are no longer 
vertically integrated (unbundled) and where planning for transmission infrastructure is performed 
by one entity while planning of other classes of investments (e.g., generation) is performed by 
others.  In particular, co-optimization is likely to be highly useful in an unbundled environment 
in which transmission infrastructure planning is separated from generation investment.  In this 
case, the process in which co-optimization is used might be called “transmission planning 
accounting for market response” or “anticipatory transmission planning.”  Key results of co-
optimization computations would include not just how generation dispatch and grid congestion 
would be affected by alternative network configurations, but also ultimately how availability of 
transmission could incent changes in generation mix and siting decisions.  Because transmission 
investments usually (but not always) have longer lead times than generation, it is appropriate for 
transmission planners to anticipate how alternative network configurations will affect the 
attractiveness of different locations for plant siting, and the resulting effects on costs, prices, and 
emissions.  

Thus, to complement the above general definition of co-optimization, we also define a second 
term that reflects the nature of the many planning processes under which co-optimization could 
be usefully applied: 
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Anticipatory transmission planning is a use of co-optimization to evaluate network 
investments while considering how generation decisions, both dispatch and 
investment, will respond to changes in transmission capacity, access, and congestion.  

Therefore, co-optimization can benefit the planning processes of states and Planning 
Coordinators regardless of market structure or regulatory regime. That is, no matter whether the 
power industry is vertically integrated or unbundled, co-optimization can be an effective tool for 
states and Planning Coordinators to better understand various risks, benefits and costs when 
assessing resource options, and to identify improved integrated solutions. 

ES-3.  Benefits of Co-optimization and Anticipatory Transmission Planning 

Co-optimization is a systematic approach to address critical questions in planning. One such 
question concerns the fundamental tradeoff that exists in many places between transmission 
investment and quality of renewable resources. In particular, how much transmission capacity 
would be needed to economically and reliably deliver the energy produced by remote high 
quality variable renewables, or is it more efficient to develop less efficient resources nearer to 
load centers?  As another example, is it more economical/reliable to invest in remotely located 
large-scale thermal or hydro generating stations and provide long distance HVDC/AC 
transmission for power delivery, or would it instead be less costly and environmentally damaging 
to invest in locally distributed and variable generation resources in highly congested regions with 
limited availability of transmission right of ways? 

Another such question concerns the diversity and flexibility value of linking power systems and 
markets. How much thermal generation capacity would be needed to reliably operate a power 
system with significant amounts of renewable energy?  By more closely linking geographically 
separate markets, how would transmission investment increase the diversity of resources and 
thereby increase the capacity value and reduce the ancillary service requirements of the 
renewable resources? How much operating and planning flexibility do additions of transmission 
capacity provide, and how can that be compared to flexibility from traditional generation 
sources?  

A final and crucial planning question concerns interaction of transmission and generation with 
emerging resources. For instance, how much generation and transmission capacity could be 
saved at the planning stage by more aggressive demand-side management and demand response 
programs? 

In this report, we illustrate the use of co-optimization models to answer these questions by 
comparing co-optimization with more traditional generation-only or transmission-only planning 
processes in a series of case studies.  One group of case studies considers simple three to four 
bus examples that transparently illustrate how co-optimization reduces cost. Other case studies 
are based on a thirteen-region representation of the US power sector, and quantify the benefits of 
co-optimization of inter-regional reinforcements under various scenarios concerning renewable 
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energy policies and technology developments. Through these examples, we have documented 
how co-optimization can lower the total cost of electricity provision through:  

1. savings of transmission and generation investment and operating costs;  
2. more efficient decisions concerning generation retirements and uprates;  
3. more appropriate treatment of variable resources;  
4. efficient integration of non-traditional resources such as demand response, customer-

owned generation, other distributed resources, and energy storage;  
5. fuel mix benefits;  
6. improved assessment of the ramifications of environmental regulation and compliance 

planning; and  
7. reduced risk and attendant effects on resource adequacy and costs. 

The simple examples show how co-optimization can yield a more balanced and economic mix of 
resources compared to transmission-only planning (transmission expansion subject to a fixed 
scenario of generation investment) and generation-only planning (generation investment subject 
to a fixed network). Generally, the lowest cost solution results from a combination of 
transmission and generation investments, and considering only one or the other results in 
unnecessarily higher costs and emissions, and perhaps even a deterioration in reliability. The 
interactions between plant siting and transmission routing decisions can be complicated and 
surprising. Sometimes investments in transmission defer the need for new generation capacity 
investments, while in other situations, development of costly local generation is preferred to 
building cheaper or more efficient generation in remote locations plus the transmission necessary 
to access it.  These phenomena can occur on radial networks, and become even more complex on 
looped grids, even for our three to four bus examples.  

In our national applications, we find that, under some assumptions about renewable technology 
and cost developments,  full co-optimization can save up to 10% or more of total generation and 
transmission costs compared to generation-only planning, and 5% or more compared to 
transmission-only planning given an assumed fixed pattern of generation investment. These 
savings are larger in magnitude than the transmission investments themselves, demonstrating the 
critical role of transmission in economically integrating renewable energy. The savings occur 
because co-optimization can result in appreciably different patterns of investment than  
generation- or transmission-only planning.  The results show that the most profitable locations 
for renewable and nonrenewable plant investment strongly depend on where grid reinforcements 
are made. Differences of 50 GW or more in regional capacity expansion are sometimes found.  
Conversely, the cost-minimizing transmission investments are very different if a fixed scenario 
of generation expansion is assumed than if possible shifts in generation siting in response to 
transmission additions are considered. 

The examples also illustrate two different types of co-optimization. The most efficient (but 
computationally challenging) type considers generation and transmission investment 
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simultaneously.  The other iterates, first expanding generation with a fixed grid (generation-only), 
then second expanding transmission given the first generation expansion solution (transmission-
only), then back to generation-only, and so forth.  We find that compared to generation-only 
planning, the iterative process can reduce costs quite significantly. However, after five iterations, 
this process yielded a plan for expanding interregional transmission in the US that is still $22 
billion more expensive (present worth of generation and transmission costs) than the co-
optimized plan, a difference of 1.3%. By comparison, the amount of transmission investment in 
the Eastern Interconnection in 2012 was approximately $3 billion, an amount that is expected to 
grow significantly in coming years.  

That application also illustrates a major benefit of co-optimization.  Full co-optimization spent 
approximately $60 billion more on transmission, but saved $150 billion (in present worth) 
compared to a solution in which generation was first planned, and then transmission was planned 
to deliver that generation. That is, there was a 2.5 benefit/cost ratio for the incremental 
transmission investment. Forty percent of the generation cost savings were derived from 
reductions in generation capital costs from more efficient generation siting and mixes, and 60% 
were variable cost savings. Thus, traditional transmission planning processes, which do not 
consider changes in generation siting and capital costs, miss a potentially very important benefit 
of transmission. 

ES-4. General Recommendations on Model Development and Demonstration 

Because of the many benefits of co-optimization that we have illustrated and quantified with our 
simplified models, we recommend that EISPC initiate efforts to develop a co-optimization tool 
for long-term electric systems planning. Although various research-grade co-optimization tools 
already exist, none have all of the features necessary to satisfy the long-term needs of the EISPC. 
We expect that the benefits available from such a tool would far outweigh the costs of 
developing it.  

As an initial step, we also recommend that one or more Planning Coordinators or States 
collaborate with a research group to apply an existing co-optimization tool using detailed data 
from their region to quantify the benefits of co-optimization in a realistic setting.  Such a study 
would reveal more precise estimates of co-optimization benefits than are possible from our 
simple three and four bus examples and US model. The study would also provide more 
information on the effort required to apply co-optimization, and on the insights that could be 
obtained. 

ES-5. Recommendations on Tool Design 

Development of a co-optimization tool that can be used in an actual planning setting requires a 
number of design decisions. These decisions often involve choosing between model fidelity 
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(realism) and computational intensity. The following summarizes the most critical of these 
design decisions as well as our recommendation in each case. 

1. Pre-processing step: We recommend a pre-processing step be included that would 
prepare data for input to the co-optimization tool. There are a number of functions that 
could be included in this pre-processing step, but the most important of them is 
identification of candidates for new transmission circuits that the co-optimization tool 
should consider.   

2. Co-optimization solvers: The co-optimization tool should avoid use of nonlinear 
optimization solvers and instead rely on highly efficient linear continuous optimization 
solvers and/or linear mixed-integer optimization solvers. Nonlinear solvers cannot handle 
as large of a problem, and take longer to execute.  

3. Network model: There are three choices for a network model, AC-flow, DC-flow, and 
transportation (“pipes-and-bubbles”) flow. Of these, we recommend use of the DC-flow 
network model as it provides good fidelity for MW flows for a modest computational 
burden.  

4. Resource and transmission options: The co-optimization tool should allow for selection 
from multiple resource and transmission technologies. Resources should include fossil-
based and renewable-based generation, demand-side technologies, and various types of 
storage. Transmission technologies should include both AC and DC lines, each at 
multiple voltage and capacity levels. AC transmission capacity should be modeled as a 
function of distance between substations having voltage control equipment. DC 
transmission should include technologies employing line-commutated (thyristor-based) 
converters and technologies employing voltage-source converters.  Simple demand 
response programs, such as critical peak pricing or peak-time rebate programs, can be 
practically and realistically modeled as programs that trigger an amount of demand 
reduction if price exceeds a threshold. 

5. Multiyear representation: The co-optimization tool should have the ability to represent a 
given time frame (e.g., 20 years) as a sequence of multiple periods (such as 2 years) such 
that optimal timings can be identified for each investment.  

6. Policy representations: There are many policies that profoundly influence power sector 
investment decisions. These include environmental policies on the federal, state, and 
local levels that address air pollution, once-through cooling, facility siting, and 
greenhouse gasses; market design features, such as capacity markets and regulatory 
preferences and incentives for particular resources; and the effects of regulatory policies 
on the attractiveness of transmission investments considering rate-of-return regulation 
and, in special circumstances, merchant transmission.  Because of their profound effects, 
these policies should be explicitly represented in co-optimization models.  

7. Outputs: The tool should not only identify economically and environmentally attractive 
near-term investments in transmission, it should also provide information on prices and 
costs, and their distribution among regions and market participants. This can be helpful in 
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understanding where generation siting would be most attractive, and who benefits from 
transmission expansion.  Because users and stakeholders will have many objectives, such 
as lower power prices, emissions, regional job creation, and fuel supply security, another 
design decision is what objectives should be optimized.  A co-optimization tool could be 
designed to have more than one objective function, and thereby be used to identify a set 
of solutions that represent a range of tradeoffs among objectives. This tradeoff 
information could inform negotiations among the interests involved in transmission 
planning, and so multiobjective capabilities should be built into co-optimization models. 

In addition to the above decisions concerning tool design, there are several other considerations 
that will become increasingly important in the future, and should therefore receive consideration 
both in designing new co-optimization methods and in research on the topic. 

1. Handling uncertainty: The past four decades shows that power system planning is subject 
to profound long-run uncertainties in policy, technology, fuel costs, and load growth, and 
that surprises are sure to be in store for power system planning in the future. It is possible 
to conceive of uncertainty in terms of parametric uncertainty around an expected value 
(local uncertainty). For instance, one might expect 1% demand growth ±0.5% over the 
next 10 years. Uncertainty can also be conceived in terms of dramatic shifts that 
significantly change the future (global uncertainty), for instance, we might expect natural 
gas prices to rise to only $7/MBTU over the next 20 years, or we may expect natural gas 
prices to rise to $15 over the next 20 years, or a policy change may occur related to 
certain resource (e.g., nuclear).  It is possible to develop co-optimization tools that handle 
both types of uncertainty, but at a significant increase in computational burden. 

2. Value of transmission expansion: The co-optimization tool should be able to assess all 
categories of benefits that transmission brings. These include (a) energy market 
efficiency enhancement; (b) ancillary service market efficiency enhancement; (c) 
emissions reductions; (d) increased network integrity (or “insurance” value) for multi-
element contingencies; and (e) enhanced competition in bulk power markets. 

3. Generation flexibility: Some RTOs recognize the need to explicitly incent operational 
flexibility. As renewable penetration increases, this issue will grow in importance.  
Therefore, co-optimization should include the ability to impose flexibility (e.g., ramping 
capability) requirements on resource portfolios as a function of net load variability. 
Modeling operational reserve requirements and proper modeling of the costs of fossil-
fuel unit cycling would need to be considered. 

4. Transmission operations: In theory, a co-optimization tool could consider operational 
issues such as system dynamics, reconfiguration, switching, right of way and voltage 
support, whose implications for planning may become more important in the future. 

5. Multi-sector modeling: The electric system influences and is influenced by the 
performance of other infrastructure systems. Among these, the natural gas pipeline 
system is today perhaps the most consequential, but the passenger transportation system 
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will become more influential as it becomes more electricity-dependent. Including the 
ability to represent interdependencies between these other infrastructure systems and the 
electric system is likely to be important in the future.  

6. Advancements in computational efficiency: Even a conservatively-designed co-
optimization tool is computationally demanding. Developing a co-optimization tool with 
the ability to run on high-performance parallel computers will be very useful.  Advanced 
optimization/decomposition algorithms could facilitate the consideration of long-run 
uncertainties as well as a greater range of load and renewable operating conditions.  One 
particular aspect of co-optimization modeling that could benefit from such advancements 
is the treatment of operational constraints and variability.  Current models usually focus 
on the “big picture” of expansion planning without including a great deal of operational 
details. This is in part necessary because of limitations in the size of models that present 
solvers and computers can handle. However, as computation capabilities improve, larger 
models with more realistic operations become possible. The need for better operations 
models is also driven by the deployment of smart grid technologies such as demand 
response, microgrids, and electric vehicles, which mean that the operations of the future 
electricity power systems could be very different from today. Improved representations of 
operations could also include unit commitment considerations or storage optimization. 

7. Market structure:  Although the deregulation process of electricity market began long 
ago, the market is still not fully deregulated. The current status quo is that vertically 
integrated regulated utilities and unbundled deregulated markets exist side by side. The 
implications of their co-existence for co-optimization, especially of interconnections 
between different systems, need to be better understood. 

The first issue, that of uncertainty, receives particular attention in this report. Traditional 
planning methods have typically applied simple and ad hoc methods to address power system 
uncertainties. These methods have served the industry relatively well in the past. However, the  
industry is increasingly challenged by the needs to address a large number of new issues, 
including the growth of distributed power systems, uncertainties concerning the location of new 
energy resources and the retirement of older generators, integration of large amounts of variable 
energy resources, more dynamic loads, increasingly stringent environmental regulations driving 
changes to the generation portfolio, and long lead times to construct major facilities. These issues 
have led to significantly more complex and less predictable power systems and raised the 
question of whether existing planning methods are adequate.  In particular, existing methods 
cannot quantify the economic value of flexibility and adaptability of transmission plans. As an 
example, some transmission investments might leave more options open than other investments 
for resource interconnection in the future because the regions they access might have a larger 
variety of resources. The option value associated with such flexibility can be important in 
transmission planning, but is not considered by present planning models, whether co-optimized 
or not. It is necessary for co-optimization model formulations to explicitly consider multiple 
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future scenarios, and how future decisions might anticipate or adapt to them, instead of simply 
running analyses on many different scenarios. 

ES-6.  Data requirements 

Co-optimization tools require more input data to run than generation- or transmission-only 
models alone. Building co-optimization models is a data-intensive task requiring significant 
effort to collect, maintain and share data without violating network security and organizational 
confidentiality standards.  However, to the extent that the data sets required by co-optimization is 
more detailed, consistent, and of higher quality than data used by other models, it can also 
benefit more focused analyses. In particular, the incremental data for co-optimization could 
potentially facilitate improved analyses of demand response, energy storage, energy efficiency, 
distributed generation, variable-output resources, capacity additions, uprates, and retirements, 
capacity degradation, and fuel prices. The benefit of better data for those studies might by itself 
justify the incremental cost of data for co-optimization planning.  

We recommend development of data repositories for use with co-optimization tools, if such tools 
are developed. These data repositories should include characteristics of existing and already 
planned infrastructure, characteristics of infrastructure options from which the tool will select, 
and future conditions.  

In developing these data repositories, it is important to capture geographical variability in 
infrastructure data.  There are such variations in (1) availability, quality, and investment cost of 
renewable resources such as wind, solar, and biomass; (2) investment and fuel expenses for non-
renewable resources such as coal and natural gas; and (3) investment costs of electric 
transmission. These variations should be reflected in the data set.  It is precisely these variations 
in costs over space that co-optimization takes advantage of in order to lower costs relative to 
traditional generation- or transmission-only planning. 

In addition, co-optimization modeling inevitably involves data aggregation in order to reduce 
the model size and computational burden involved in regional infrastructure planning. This 
implies a need for the various entities involved to share data and identify regional boundaries for 
resource aggregation (e.g., to account for transfer capacities). 

ES-7.  Institutional Considerations  

A well-designed planning process for generation and transmission that uses co-optimization 
needs to identify the needs of state regulatory and planning bodies, balance competing objectives 
of concern to stakeholders (such as cost, reliability, and environmental impact), and help allocate 
scarce resources among potential investment choices. Our analysis of the institutional issues 
associated with co-optimization concludes that robust co-optimization-based planning methods, 
reflecting the interests of local jurisdictions in the region, would likely be more effective in 
relieving regional transmission congestion and ensuring long-term resource adequacy. Such 
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planning processes should provide a formal role for state governments and thus facilitate active 
participation by state officials: utility regulators, energy offices, consumer advocates, and 
environmental regulators, as appropriate to each state. It should also involve consumer and 
citizen interests as well as market players to guide the planning process.  These are requirements 
under FERC Order 890, and co-optimization tools can facilitate informed involvement by 
stakeholders in this process. 

Another institutional issue is co-ordination across different markets or regulatory jurisdictions.  
As the discussions over FERC Order 1000 have shown, there is strong interest in coordinating 
regional planning efforts in order to facilitate integration of renewables and lower the cost of 
power to consumers. Those discussions also show how difficult it is to achieve such coordination 
given our federal, devolved system of government and the diversity of institutions involved in 
planning. Institutional developments under Order 1000 should be followed closely to identify 
lessons that would be useful for conducting co-optimization studies.  Co-optimization tools that 
encompass multiple regions will yield better estimates of the benefits of coordination of 
operations and investment across regions, which supports Order 1000’s objectives. 

A final issue is: who can interact in the planning process that utilizes co-optimization software 
and associated data? In unbundled markets, it is the case that generation owners are restricted to 
only the transmission information that is on OASIS and are limited in the communication they 
can have with transmission operators and planners. But yet co-optimization by definition 
considers interactions between generation investment and transmission reinforcements. It can be 
fairly asked: how can the need for separation be reconciled with the need to represent 
interactions and to have extensive data on both generation and transmission?  We believe that the 
data necessary for informed co-optimization can be obtained and used by transmission processes 
overseen by utilities, states, and RTOs, but that restrictions on permissible communications will 
need to be understood and respected in those processes.  
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1 INTRODUCTION 

1.1 Motivation 

Optimization models have long been used to aid federal and state government agencies as well as 
utilities to plan electricity supply and to evaluate the economics of potential transmission 
investment. While the established practice is to plan supply resources first, and then to plan 
transmission, assessing both simultaneously to provide an integrated plan is capable of 
identifying attractive solutions that may not otherwise be considered. Doing so is becoming more 
important, due to, first, the increasing penetration of variable-output renewable resources, energy 
storage, distributed generation and demand response, and to, second, the need for interregional 
energy transfers to take advantage of diverse and remote sources of power. With hundreds of 
billions of dollars anticipated to be invested in sustainable energy sources and the transmission 
needed to access them, it is essential that transmission investments are made efficiently.   

In particular, to provide better decision support for planners and regulators, planning models are 
needed that optimize transmission investment while simultaneously considering tradeoffs with 
investments in electricity supply and demand resources, while recognizing potential bottlenecks 
in natural gas supplies.  In a vertically integrated planning environment, such models could be 
used for more efficient planning and investment in all resources and transmission, capturing to a 
greater extent the value provided by transmission [103,18].  In an unbundled environment, these 
models would instead be used by transmission planners to anticipate how network investments 
change incentives for the siting and sizing of investments in various types of resources.  Recently, 
advances in mathematics and computer science have made it practical to formulate and solve 
such models, which are called co-optimization models1

There are two major reasons why co-optimization is essential in order to maximize the economic 
benefits and minimize the environmental impacts of transmission system expansion. One is that 
local generation and demand response can substitute for transmission in meeting future power 

. Several have been applied for planning 
and policy analyses.   

This Whitepaper demonstrates that co-optimization can produce more economic transmission 
results than can be achieved with existing state-of-the-art tools.  Specifically, the Whitepaper 
demonstrates that planning transmission without considering how generation and other resource 
investment could adjust in response to the changed network configuration may result in overall 
higher costs to consumers. Similarly, this Whitepaper provides examples that lower-cost and 
greater reliability can be achieved with co-optimization of all resource alternatives.   

                                                 
1 In states where the power sector is unbundled, the term “co-optimization” is a slightly misleading characterization 
of these models, since the transmission owner would not use such models to optimize resource investment, but 
instead to simulate the decision process of resource owners. 
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needs of customers. Thus, transmission reinforcements are not necessarily the least-cost means 
of meeting those needs (considering both economic and environmental costs). Second, siting of 
new generation, including renewable sources, is influenced by the availability of transmission, so 
that different transmission expansion plans will ultimately result in different patterns and even 
mixes of generation investment.  Consequently, the benefits of transmission expansion should 
consider not only fuel savings resulting from reduced transmission congestion, but also capital 
cost savings from more efficient generation investment. These fundamental reasons for co-
optimization are recognized not only by researchers (e.g., [119]) but also by RTOs/ISOs who 
mandate consideration of such resource interactions in transmission planning (such as the 
California ISO [4]).   

This recognition of transmission’s interaction with other resources has motivated the 
development of co-optimization methods by researchers and their first applications to important 
transmission planning and policy problems (such as [44,86,110,124,142,149]). There are no 
overviews available of these models, although there exist thorough reviews of the formulation 
and application of generation expansion (e.g., [50, 126]), electricity market models [138], and 
models for transmission planning (e.g., [83]). However, because of the growing recognition of 
the benefits for co-optimization and the expanding literature and methods in that area, an 
overview is needed of approaches to co-optimizing transmission, generation (including 
distributed and variable renewable resources), loads (including demand response and more 
traditional demand-side management programs), and/or natural gas pipelines. This White Paper 
responds to that need.  In particular, the purpose of this White Paper is to provide an up-to-date 
and in-depth assessment of the present and potential capabilities of existing or readily developed 
co-optimization models relative to alternate transmission planning approaches.  The focus of this 
assessment is on meeting the needs of the Eastern Interconnection States’ Planning Council 
(EISPC) for a public domain model with reasonable data requirements, and an assessment of the 
potential benefits of co-optimization modeling.  

1.2 Scope 

This document begins with a review of modeling approaches presently used for resource 
planning and co-optimization, both implemented and proposed (Section 2), followed by 
implementation requirements for co-optimization software including data requirements, 
computing needs, and time requirements for model development and initial validation (Section 
3). We next describe the need for, and theoretical benefits of, co-optimization compared to 
traditional planning methods and provide several illustrative examples which also serve as a 
basis on which to address validation protocols (Section 4). Uncertainties (such as fuel costs, 
ramifications of potential environmental regulations, load growth) are large and growing in 
importance in resource and transmission planning, and should be addressed by co-optimization 
models. Approaches for doing so are reviewed in Section 5. We then turn to confidentiality 
concerns and other institutional issues, including the potential role of the states in developing 
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databases and applying co-optimization models, and the advantages and disadvantages of having 
co-optimization models in the public domain (Sections 6).   

The report closes with recommendations for next steps, including in terms of model and data 
acquisition, model testing, and (if applicable) model improvements (Section 7). The purpose of 
these recommendations is to help EISPC foster and produce consistent and coordinated direction 
to the regional and interconnection-level analyses and planning that should benefit not only 
EISPC members, but all the market participants and electricity consumers, and to meet our 
nation’s long-term electric power needs. 
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2 REVIEW OF PRACTICE, METHODS, AND NEEDS OF RESOURCE 
PLANNING MODELING AND CO-OPTIMIZATION 

2.1 Introduction 

The purpose of this section is, first, to review present practices of modeling for resource planning 
and transmission planning (Section 2.2).  This is background to our subsequent discussion of co-
optimization: its definition,    

2.2 Review of Practice and Literature of Resource Modeling 

Power system expansion planning encompasses generation expansion planning (GEP) and 
transmission expansion planning (TEP). Power system expansion planning would often consider 
issues such as when to build, how much capacity to add, what type of generation is needed, and 
where to locate new facilities. The role of system planners often goes beyond providing a plan 
with good economic incentives that satisfies reliability requirements. Planners would have to 
satisfy other objectives and constraints such as minimizing operation and maintenance costs, 
increasing the resiliency in the system operation, minimizing environmental impacts, and 
satisfying investment risk constraints. 

Where generation and transmission are vertically integrated, generation and transmission 
expansion studies are carried out by the same entity. It was customary to consider transmission 
planning cases once a generation expansion plan was set. Two reasons accounted for separate 
expansion planning studies [140]. First, generation made up the great bulk of investment, 
typically more than 80%-90%. Therefore solving the GEP problem first by deciding on types of 
generation investment and then sites, considering general transmission costs among other factors, 
and subsequently using that generation plan as an initial condition for the TEP problem was an 
acceptable planning process. It was generally believed, often with justification, that additional 
cost savings that could be wrung from co-optimizing generation and transmission would be 
relatively small. For example, when the new generation technology was nuclear or large hydro, 
severe siting constraints generally dictated the location of plants, and transmission costs were a 
relatively minor consideration. Many coal facilities were sited at the mine mouth, which also 
constrained transmission facilities.  

However, transmission costs and siting considerations have grown in importance recently for 
several reasons, increasing the desirability of co-optimization. First, siting and permitting extra 
high voltage (EHV) transmission lines has only become more expensive and politically 
contentious. Second, natural gas-fired facilities make up the great bulk of thermal generation 
investment today; they are less capital intensive, have much more siting flexibility because of the 
well-established and extensive gas network, and often use dry cooling technologies, so that water 
constraints are less of a siting constraint. Third, although the best locations for renewable 
resource development are sometimes just as limited as potential sites for nuclear plants in the 
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1960’s and 1970’s, they are more diffused in space with individual wind farms and other 
facilities being much smaller than nuclear units.  It is recognized that the best renewable resource 
sites in the United States are remote from the largest loads, requiring expansion plans to consider 
tradeoffs between remote, high-quality resources requiring substantial transmission investment 
and lower-quality, nearby resources Fourth, industry restructuring has increased the economic 
incentives for interregional transmission motivated by fuel savings, as consumers, power 
marketers, and utilities have strong incentives to access the cheapest sources of power, and the 
benefits of coordinated operation of utilities become more apparent. These benefits can be 
particularly large when variable renewables make up a very large fraction of new generation, 
since a greater diversity of type and location of renewable sources will improve the overall 
availability of renewable energy. For instance, rather than taking advantage of only the best wind 
resource, in terms of average power, it is optimal to distribute wind development over a large 
area, even if it means using some lower quality resources, because wind output is not perfectly 
correlated between different locations. 

As a result of these trends, the incentive to consider co-optimizing GEP and TEP has grown, and 
this incentive would be enormous if it would lead to even a very small savings in power system 
planning and operation costs. However, co-optimized GEP and TEP problems posed significant 
computational challenges; computer resources available to planners before 2000 were incapable 
of supporting the solutions of co-optimization models. Fortunately, recent advances in 
computation methods have provided satisfactory solutions to co-optimized GEP and TEP 
problems with reasonable computation times, so now realizing savings by using co-optimization 
is a real possibility. 

In this section, we review classic and widely applied methods for generation expansion planning 
(Section 2.2.1), after providing background on the context of generation expansion. These, 
together with the transmission planning methods discussed in Section 2.2.2, provide the 
foundation for true co-optimization. In Section 2.2.3, some of the literature and methods of co-
optimization are reviewed as background for the more detailed consideration of specific co-
optimization methods in Section 3.  In that section, we differentiate between national and large 
regional models that are used for policy analysis and assessing the economics of large 
interregional power transfers, and more focused and detailed transmission planning. The former 
use aggregations of the grid, while the latter usually represent individual circuits. 

2.2.1 Generation planning models 

2.2.1.1 Introduction: The changing needs for generation investment models 

Models for generation expansion planning were one of the first applications in the 1950s.  Linear 
programming is method of optimization in which the values of the decision variables are chosen 
to maximize or minimize a linear objective function subject to linear equality and inequality 
constraints that define what values of the variables are feasible.  Early proposals for co-
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optimization models, based on linear programming of simplistic “pipeline” (transshipment) 
models, were featured in a standard electricity economics textbook [133]. At the same time, 
dynamic programming formulations of generation capacity expansion models were popular (for 
instance, the IAEE’s WASP [141]). Dynamic programming is a type of optimization algorithm 
that finds optimal solutions by considering a sequence of easier problems.   

The clients for these generation planning tools were publicly and privately owned vertically-
integrated utilities whose planning decisions were subject to various degrees of state and/or 
federal regulatory oversight. Utilities adopted these models as means of responding to questions 
received in the regulatory process, while intervenors used them to challenge the data and 
conclusions of utility studies.  The tools became increasingly elaborate through the 1980s and the 
Integrated Resource Planning era of the 1990s [38].  For instance, they expanded the range of 
resources considered from traditional thermal plants to include intermittent renewables, storage, 
energy efficiency, and demand response. 

However, the restructuring and unbundling of the power industry since then has shifted the focus 
from comprehensive planning of the entire system to focused financial analyses of the risks and 
cash flows of individual generation investments. The generation investment problem is now 
more complex in several ways. First, the planning problem is exposed to much more 
uncertainties in input data, such as load forecasts, price and availability of fuels, construction 
lead time, economic and technical characteristics of new generating techniques, governmental 
regulations, and transmission. For example, not only is the future load level uncertain, most 
generation companies nowadays cannot take their market share for granted as the result of 
competition with other generators as well as other independent power suppliers. Second, in the 
planning process several conflicting public and private objectives must be addressed. Objectives 
could include maximizing profit, maximizing system reliability, minimizing emissions of 
greenhouse gases, or minimize investment risks. These objectives are likely to conflict with each 
other. Third, large scale integration of renewable energy will have a profound impact on the 
economic, environmental, and perhaps reliability performance of future system operations, 
which requires new tools for production cost simulation and reliability evaluation. Fourth, as the 
result of increasing competition, interregional trade makes up an increasing fraction of supply in 
many regions, and so needs to be represented in planning models.  Fifth, the changed market 
structure alters the way that generation owners evaluate investments. In the deregulated system, 
vertically integrated utilities get a pre-determined rate of return on the authorized rate base, 
subject to prudency reviews by regulators. In the electric market, the generation owner (GenCos) 
bear the risk of uncertain energy, capacity, and ancillary services revenues from the electric 
market as well as fuel and construction cost uncertainties.  So for deregulated generators, the 
objective of generation expansion planning shifts from minimization of (production cost + 
investment cost) to maximization of (generator revenues – investment cost). 

However, even where the power sector is completely unbundled, integrated models that 
comprehensively consider the mix and amount of generation investment in region still play an 
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important role in policy analysis and transmission planning. Policy makers use integrated models 
to simulate how the generation market might react to changes in regulation, technology, or 
economic conditions, while infrastructure planners use them to project the benefits and costs of 
transmission investment. Because many co-optimization models can be viewed as extensions of 
traditional generation capacity planning techniques, we next review models used today to 
analyze the potential configuration and performance of generation systems. 

2.2.1.2 Overview of generation expansion planning models 

The classic generation expansion planning (GEP) problem is defined as the determination of the 
best size, timing, and type of generation units to be built over a multi-decadal planning horizon, 
to satisfy anticipated load growth. The investment criterion was normally minimization of the 
sum of capital investment and operation costs subject to various constraints.  A generic form of 
the GEP problem is as follows: 

Minimize the discounted sum of future investment and operating costs 

Subject to: 

Total Energy production of all units = Demand for each time period in each year 

Unit energy production < Unit capacity for each generating unit, in each time period in 
each year 

Loss of load probability < LOLP requirement in each year 

The user must input assumptions about how load, fuel costs, efficiency, and technology 
availability change over time.  The result is a schedule of generation additions over the years y, 
and estimates of dispatch costs in each period t in each year.  Even though this schematic 
formulation disregards important considerations such as transmission, unit commitment 
constraints, and environmental restrictions, it does address the major questions of cost, fuel 
choice, technology and system reliability. 

A high level description of the generation expansion procedure is illustrated in Figure 2-1, which 
describes a process in which separate reliability and production (operating) costing models are 
used to evaluate proposed portfolios of generation assets. The above optimization problem can 
be viewed as the integrated and automated consideration of a wide range of generating unit sizes, 
types, and timing, including consideration of investment and production costs and reliability, 
resulting in the recommendation of a plan that minimizes the cost objective and meets all 
constraints. 
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Figure 2-1. Generation expansion planning procedure [126] 

Generation expansion planning is a challenging problem because of the large-scale, long-term, 
non-linear, and discrete nature of generation investment. Many commercial-grade system 
planning tools have been developed that differ in terms of solution algorithm, formulation of 
operating sub-problems, modeling granularity, and numerous other features. There are three 
main types of planning tools for generation capacity expansion: reliability, production costing, 
and resource optimization, as shown in Figure 2-2. Specific examples are summarized below. 
The focus of the present report is on optimization methods, since they are the basis of the co-
optimization models we describe and apply elsewhere in the report.  



 19 

 

Figure 2-2. Classification of system capacity expansion planning tools 

The tools can be further sub-divided into three categories: system models, modular packages and 
integrated models [62]. Their differences are illustrated below. 

System models normally have only a database and some means to organize and/or analyze data. 
Such tools are generally not as comprehensive in scope as Modular packages. Figure 2-3 is a 
simplified system model. 

 

Figure 2-3. A simplified diagram of system model 

Modular packages are integrated software packages that include modules for economic/reliability 
analyses, for projecting system load growth, or for balancing energy supply and demand. In the 
planning process, the users might not need to use all of the modules. They can select to use any 
module according to their need and nature of the problem. A simplified diagram of modular 
packages is shown below in Figure 2-4.  Each module communicates directly with the data base; 
coordination of the modules is accomplished by the output of one module altering the data base, 
which is then read by another module. 
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Figure 2-4. A simplified diagram of modular packages 

Integrated models solve different aspects of the planning problem simultaneously. They often 
cover energy-economic-environment interactions. Figure 2-5 is a simplified diagram of 
integrated models.  In this case, the modules are not distinct, nor do they communicate separately 
with the data base.  Instead the data is input to the integrated system, and the modules are then 
solved simultaneously and together, 

 

Figure 2-5. A simplified diagram of integrated models 

However, the comparison and classification of different tools is not straightforward, as tools are 
often designed for specific purposes and distinct markets. For example, the underlying economic 
structure varies from model to model. Further, documentation of the assumptions of commercial 
packages is often deliberately vague to safeguard proprietary ideas. 

2.2.1.3 Production cost simulation tools 

Production cost programs have become the workhorse of long-term planning [64]. These 
programs perform simulations of how a pre-specified set of generation investments (and 
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sometimes transmission investments as well) are operated, resulting in performance indices such 
as total fuel costs, emissions, and various reliability indices.  Some simulation models consider 
operating hours in chronologic order, in which case they become unit commitment models. The 
unit commitment solution determines a day-ahead (or weekly) schedule for minimizing the cost 
of fuel for supplying electric power and starting-up/shutting-down generating units while 
satisfying the prevailing constraints listed below [121]: 

• Hourly Load balance 

• Hourly generation bids 

• System spinning and operating reserve requirements 

• Minimum up and down time limits 

• Ramp rate limits of units 

• Generating capacity constraints 

• Startup and shutdown characteristics of units 

• Fuel and multiple emission constraints 

• Bilateral contracts 

• Must-on and area protection constraints 

 Since thermal generators cannot instantaneously start-up or adjust generation outputs, the 
increased variability in net load that results from renewable penetration can stress power systems 
and increase costs.  Other simulation models emphasize computational efficiency using load 
duration curves (including so-called Baleriaux-Booth methods).  A load-duration curve re-orders 
operating hours from highest to lowest net demand, thus losing information about how load 
ramps up and down.  However, computation of plant-by-plant generation output is easily (if 
inaccurately) calculated by “stacking” generators under the duration curve.  Start-up costs and 
ramp limits are difficult or impossible to consider by such models, but when generation mixes 
had low renewable penetration, this mattered less.  Although production cost models usually 
make use of optimization, it is for performing dispatch, and not for selecting generation 
investments.  Production cost programs often incorporate reliability evaluation in addition to 
economic models. A representative list of commercial grade production cost models include: 
GenTrader [37], MAPS [10], GTMax [68], PLEXOS [104], PROMOD [107], and PROSYM 
[108].  
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2.2.1.4 Reliability assessment tools 

Like production costing models, reliability assessment tools are evaluative only.  That is, they do 
not identify optimal investment plans but just evaluate the performance of pre-specified sets of 
generation investments, sometimes in combination with transmission investments.  Their focus is 
on the ability of a defined system to meet load under specified conditions.   

Both deterministic and probabilistic tools are heavily used in the planning process. Deterministic 
tools include power flow, stability, and short-circuit programs, and assess whether a combined 
generation-transmission system operates satisfactorily under specified conditions and 
contingencies. Probabilistic tools compute indices such as loss-of-load probability, loss of load 
expectation, or expected energy not served for a pre-specified investment plan.  They consider 
probabilities of satisfactory performance over a range of load and equipment outage conditions, 
rather than one scenario at a time like the deterministic models. Probabilistic tools are most often 
applied to generation systems without considering transmission, although probabilistic reliability 
tools do exist for combined generation-transmission systems. A representative list of 
commercial-grade reliability evaluation models include CRUSE [81], MARS [85], PLEXOS 
[104], TPLAN [131], and TRELSS [132]. 

2.2.1.5 Resource planning tools 

Classic resource optimization models select a minimum cost set of generation investments from 
a range of technologies and sizes to satisfy constraints on load, reserve, environmental concerns, 
and reliability levels [51,133], as summarized above (Section 2.2.2). However, even though 
[133] summarized a linear programming-based co-optimization model, commercial generation 
expansion models often do not represent transmission, or if they represent it but do not consider 
the possibility of new transmission investments.  

A representative list of resource optimization models includes EGEAS [48], PLEXOS [104], 
Strategist [146], and WASP-IV [141]. They, along with models proposed by researchers, use a 
variety of optimization algorithms to solve the generation planning problem, such as: 

• mixed integer linear programming [38], in which both continuous and discrete (0-1) 
decision variables are considered. Discrete variables can be used to model the fact that 
generators are only available in a few sizes. 

• dynamic programming [100],  

• decomposition methods [16,41,129] which divide the problem into separate design (plant 
sizing) and operations problems.  An example is Benders decomposition, in which the 
operations subproblem is used to estimate not only total operating cost for a trial solution, 
but also the marginal cost savings that would result from increases in capacity; that 
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marginal information helps guide the design problem towards a more efficient trial 
investment plant. 

• neural networks [143], which are particularly flexible methods for statistical fitting of 
input-output relationships, 

• network flow models [94], which are particularly easy-to-solve linear optimization 
models, 

• genetic algorithms [35], which attempt to identify better solutions by randomly changing 
values of the decision variables of trial solutions and then using a competitive “selection” 
process to determine which trial solutions will “survive” and produce “offspring” by 
further random changes, and 

• stochastic optimization [9,111], a type of optimization that attempts to identify solutions 
that do well across a range of possible assumptions or scenarios about, for instance, load 
growth or fuel prices.  

Most commercial grade models focus on supporting investment decision making and are 
employed by utilities, GenCos, and TransCos, while others are national policy analysis tools 
which are used by government and other organizations to understand the impacts of potential 
policy changes. 

Resource optimization models incorporate simplified production costing models as a subproblem, 
and often reliability evaluation as well. Figure 2-2 above classifies common commercial system 
capacity planning software. Table 2-1 below summarizes some of the attributes of more 
commonly used packages.  For instance, the packages differ in their treatment of transmission.  
A DC optimal power flow (OPF) formulation linearizes the nonlinear AC equations when 
calculating transmission-constrained dispatch, and may or may estimate resistance losses. 
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Table 2-1. Attributes of some resource planning tools 

 Resource planning tools 

Features PLEXOS GEM EGEAS Strategist 

Model category Integrated 
model Integrated model Modular 

packages 
Modular 
packages 

Transmission 
constrained Yes No No No 

Geographic scope Regional Regional Regional Regional 

Algorithm 

Quadratic 
programming, 
Mixed integer 

linear 
programming, 

Dynamic 
programming, 

Stochastic 
programming 

Mixed integer 
linear 

programming 

Generalized 
Benders 

decomposition, 
Dynamic 

Programming 

Dynamic 
programming 

Economics / Reliability Both Both Both Both 

Objective 
Multiple   
objective  
functions 

Least cost Least cost 
10 different 

objective 
functions 

Methods to represent 
system load 

load duration 
curve or 

chronological 

load duration 
curve 

load duration 
curve 

chronological 
load in  twelve 
typical weeks 

per year 

Plant retirement 
decisions √  √ √ 

Transmission Loss DC OPF, 
quadratic losses 

only losses on 
HVDC No 

quadratic loss 
function 

Market transactions √ √   

Reliability evaluation 
method 

Monte-Carlo, 
N-x 

contingencies 

N-1 
contingencies Monte-Carlo Monte-Carlo 

 

2.2.2 Transmission planning models 

2.2.2.1 Overview 
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The primary purpose of Transmission expansion planning (TEP) is to determine the least-cost 
transmission additions to meet load from a defined set of generation facilities and/or exchanges, 
subject to reliability constraints. New transmission lines can provide voltage support and 
improve system reliability, as well as interconnecting new generation units and accommodating 
increased long-distance exchanges. Costs might include just transmission investment costs, but 
increasingly include costs of generation investment and operations.  These economic benefits are 
increasingly important in transmission decisions, as pointed out in Section 1.  The reliability and 
economic benefits of a particular transmission upgrade change over time as the result of the 
changes in loads, generation and grid topology, so multiple years (as many as 20-30) need to be 
considered. 

Historically and often currently, utilities were almost exclusively concerned with reliability and 
meeting NERC requirements with relatively little concern for their economic implications.  More 
recently, for the reasons such as access to renewable resources, the economic benefits of new 
transmission facilities have become more important and have sometimes become the major 
driver.  However, projects that were primarily intended to satisfy a reliability problem will 
almost certainly have economic benefits and vice versa. Understanding the shorter and longer-
term reliability and economic benefits of facilities has an important bearing on the receptiveness 
of customers to pay for these facilities. 

In the traditional regulated utility environment, vertically integrated utilities operate the whole 
electric system and make investment decisions for both generation and transmission additions. 
Transmission expansions can be justified if there is a need to build new lines to connect cheaper 
generators to meet the current and forecasted demand or new additions are required to maintain 
or enhance system reliability, or both. In the traditional transmission planning model, the capital 
investments are often justified by the need to meet reliability requirements to serve the current 
and forecasted load. As cost is often used as a criterion to evaluate investment alternatives, and 
various reliability criteria must be met, the traditional transmission planning problem is normally 
formulated as a cost minimization problem with reliability as a constraint [144]. 

Figure 2-6 provides a schematic of the traditional “generation first” transmission planning 
process in which a vertically integrated utility first devises a generation plan, and then plans 
transmission to accommodate the generation investments. 
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Figure 2-6. Transmission expansion planning procedure (from [126]) 

In the restructured power industry, transmission expansion planning encompasses many 
economic and engineering issues, including the facilitation of competition among generators [4]. 
As the results of the issues arising in the new system structure, many aspects of planning 
problems are being re-evaluated and new methods are being proposed to address them.  
Responsibilities are often split between transmission owners, who propose projects, and 
RTOs/ISOs, who often conduct independent economic analyses of those proposals [4].  It has 
been argued that the appropriate way to view the transmission planning problem is as a 
“transmission first” bi-level problem, in which planners of transmission infrastructure make 
decisions about where to make transmission additions, anticipating how generators will invest 
and operate in response to transmission availability and pricing [113].  In general, this is a very 
difficult nonlinear problem [36].  There is some literature that takes iterative approaches to 
solving this game between the transmission “leader” and generation “follower”, in which 
separate models for transmission and generation are coordinated (e.g., [113]).  However, in the 
case in which it is assumed that transmission is efficiently priced (using locational marginal 
pricing), all markets are competitive, and generators react rationally to locational incentives, the 
bi-level problem can be reduced to a single optimization problem, which is more easily solved 
and is practical for real transmission planning. This naturally leads to co-optimization 
formulations of transmission planning problems, representing optimization of both transmission 
assets as well as the mix, location, and timing of generation investment (e.g., [142]). Co-
optimization models are, of course, the focus of the present report. 
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2.2.2.2 The objectives of transmission expansion planning 

As the paradigm of the traditional least-cost expansion criteria is not valid in the new market 
environment, there has been a debate on what criteria shall guide the transmission expansion 
decision making. Based on the decision maker’s concerns, the objective function could be 
minimization of (production cost + investment cost), minimization of (congestion cost + 
investment), maximization of (consumer and generation surplus – investment cost), 
maximization of (TransCo’s expected revenue – investment cost), minimization of investment 
risk, minimization of greenhouse gas emissions, or several objectives at the same time. These 
various kinds of objectives reflect the interests that different parties want to gain from the 
planning problem. Statutorily, entities such as state commissions have varying degrees of 
responsibility to ensure the lowest delivered cost reasonably possible while achieving a high 
degree of reliability. The Federal Energy Regulatory Commission (FERC) and North American 
Electric Reliability Corporation (NERC) have statutory obligations to ensure enough 
transmission lines are built to maintain system reliability. From the TransCos’ perspective, they 
want a return on transmission investment cost allocation plans and revenues from the financial 
transmission rights, energy market, and bilateral contracts. TransCos also want to minimize their 
financial risks. From the ISO/RTO’s perspective, they want to ensure that the electric system will 
be operating reliably. What is more, they also want to relieve transmission system bottlenecks, 
transfer economic generation from remote areas, promote competition in wholesale electric 
markets, lower system production costs, and decrease customer payments. From GenCos’ 
perspective, they want a transmission investment plan that can deliver their generation resources 
without congestion. It is very difficult to satisfy all the above needs, which renders transmission 
planning a multi-objective problem. 

2.2.2.3 Coordination with generation and load 

As the planning for both generation and transmission is carried out by a single decision maker in 
the regulated industry, the transmission planner can obtain good information on generation 
expansion plans and loads. In the restructured environment, however, the authority that conducts 
transmission planning does not own the generation companies, so generation plans (and reactions 
to changes in network capabilities and costs) are uncertain. For example, when the Mid-continent 
Independent System Operator (MISO) plans transmission, the first step is to forecast the 
generation resource additions within the planning horizon. The imperfect information might 
produce imperfect expansion plans. Moreover, as generation projects generally have much 
shorter lead time than transmission expansions, new generation projects might be built after a 
transmission plan is finalized but before the line is ready to be operated. As the initial 
transmission plan did not take those generation projects into consideration, the transmission 
investment might no longer be optimal in terms of economic value or reliability requirements. 

Symmetrically, transmission additions might affect the economic or reliability justification of a 
generation investment plan. For example, in U.S. Eastern Interconnection, most of the wind-rich 
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areas are located in the Great Plains states, which are far from load centers. Where a co-
optimization model might find savings in simultaneously developing remote wind and high 
capacity transmission lines to connect it to load centers, a generation-only model without such 
lines is likely to choose to develop local resources that tap existing regional transmission instead. 
Similarly, without existing, remote wind farms injecting power, a transmission-only model will 
likely decline to invest in new inter-regional transmission corridors. This chicken-and-egg 
problem helps justify the development and use of co-optimization models. 

As another example of the interaction of transmission and generation decisions, the imminent 
retirement of a significant portion of the coal generation fleet and perhaps significant amounts of 
nuclear capacity as well will result in a need to interconnect new natural gas-fired generation.  
The cost and access conditions for this new transmission are a significant influence on plant 
siting decisions.  

2.2.2.4 Transmission planning tools 

Just like generation expansion planning, the transmission expansion planning problem can be 
phrased as a large-scale non-linear mixed-integer programming problem. That is, the objective 
function and/or constraints are non-linear, while some decisions discrete in nature (either build a 
particular facility or not) and are modeled as 0-1 variables.  Many optimization techniques have 
been employed in the transmission planning optimization models, most of which are in the 
research stage rather than commercial software. These algorithms include  

• dynamic programming [30],  

• game theory [21],  

• fuzzy set theory [127],  

• expert systems [6,94],  

• object-oriented programming [47] 

• decomposition [41,42,43,44,129],  

• heuristic methods [76], such as genetic programming. 

• non-linear programming [147], and  

• mixed-integer programming [5,142].   

The two algorithms that were not previously defined are (1) fuzzy sets, which gauge the 
attractiveness of a plan by so-called “fuzzy” criteria that capture a user’s vagueness about what 
levels of a numerical criterion are desirable and (2) object-oriented programming, which allows 
users to interact with and build models by clicking and connecting “objects” on a screen, rather 
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than write lines of code. Although most of these are research models, an exception is PSR’s 
transmission planning package, a mixed-integer programming model that is now being applied 
by WECC [5].  

2.3 Co-optimization 

This section will review existing co-optimization models, and then lay out basic choices 
associated with designing a co-optimization planning model, and also will summarize advantages 
and disadvantages of each choice. It comprises following subsections. Section 2.3.1 presents 
definitions of co-optimization models.  Then in Section 2.3.2, we review existing co-
optimization models, differentiating between ones used for national- or regional-scale policy 
analysis, and ones used for detailed transmission planning.  We then present a summary of 
selected existing co-optimization tools and their modeling features as a table. Detailed reviews of 
each of these existing tools are presented in Appendix II.  

Following this review, we then turn to the choices that must be made when developing a co-
optimization model.  First, we discuss the choices associated with network representation 
(Section 2.3.3), within which for each choice the associated data preparation, investment 
decision options and the features of the model optimizer are discussed. Section 2.3.4 presents the 
choices available for resource investment options. Section 2.3.5 presents a discussion on other 
additional planning tool attributes such as end effects modeling and handling uncertainties.  

2.3.1 Definitions of co-optimization 

We begin with two definitions, which are depicted in Figure 2-7: 

Definition A: Co-optimization is the simultaneous optimization of two or more different yet 
related resources within one optimization formulation. Unlike the traditional electric systems 
planning approach, where generation and transmission investment are typically identified in 
sequence (usually generation, then transmission), a co-optimized approach identifies them 
simultaneously. We assume in the remainder of this document that the co-optimization model is 
multi-period so that solutions include not only what, where, and how much generation and 
transmission to invest in but also when. 

Definition B: Another perspective to co-optimization of resources is given by relaxing definition 
A to: “co-optimization is the optimization of two or more different yet related resources within 
one planning framework.” Here the emphasis on simultaneous optimization within one 
formulation is relaxed, while still the objective is to comprehensively optimize all related 
resources within one framework. This can be achieved by introducing an “iterative approach” to 
the traditional sequential planning of generation and transmission, until a complete coordination 
between generation and transmission planning solutions exist. This approach to co-optimization 
relates to the current independent practices of generation and transmission planning 
organizations, and also allows for improvising the respective optimization tools to accommodate 
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specific considerations for generation (e.g., economics, policies, futures) and transmission (e.g., 
reliability, control schemes) expansion planning respectively. While an iterative approach to co-
optimize may reduce computational burden, it may not converge and provide global optimal 
solution.   

 

(a) Definition A     (b) Definition B 

Figure 2-7. Co-optimization definitions 

There are several challenging issues in the co-optimization of GEP and TEP. First, conflicting 
objectives: GEP can be driven by prices but the same principle may not apply to the TEP [110]. 
Second, power system constraints such as network flow limits, load demands, and reliability 
requirements link the two planning problems, which introduce an additional dimension of 
difficulty in finding feasible and practical planning solutions. Third, one of the main obligations 
of expansion planners is to facilitate a fair and competitive market. The planner also has to take 
into account uncertainties associated with renewable energy, non-traditional generation resources 
such as microgrids, fuel costs, component outages (such as transmission lines, plants, and 
transformers), and customer behavior including demand response. The co-optimization of GEP 
and TEP becomes much more challenging when contemplating the full range of uncertainties 
relevant to expansion planning. 

Early versions of these models have been proposed as linear programs, and in the case of thermal 
power plants, versions of these models have been proposed back in the 1960s and documented 
by Ralph Turvey in his classic book on electricity economics [133].  However, those models did 
not address the effect of Kirchhoff’s voltage law (KVL) on transmission (i.e., parallel flows), 
thus distorting calculations of flows and overstating transmission capacity. 2

                                                 
2 Kirchhoff’s Laws include the Current and Voltage laws.  The former says that there is a current balance at any 
node (bus) in a network, with inflows equaling outflows.  The latter says that the net voltage drop around any loop in 
a network must be zero.  In the linearized DC load flow model, the analogies to these laws are, respectively, that the 
net inflow of power to any bus is zero and that the sum of the products of power times reactance around any loop is 

   Transmission 
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capacity is overestimated because models that disregard KVL implicitly assume that flows can 
be routed to avoid congestion, which is not possible in the absence of FACTS devices such as 
phase shifters. 

A separate strand of work has been power plant siting models that choose specific locations for 
power plants and transmission lines, subject to assumptions concerning generation mix.  A flurry 
of activity in this area was the result of President Carter’s National Coal Utilization Assessment, 
and is summarized in [50] (for a more recent review, see [53]).  These models, however, tend to 
treat generation and transmission investment as continuous variables, and also ignore Kirchhoff’s 
voltage law. 

Very recently, there have been several applications of generation-transmission co-optimization 
models at two scales. One scale involves detailed representations of AC load flows, or linearized 
DC load flow approximations, of actual high voltage transmission facilities as they interact with 
potential generation facilities within a single utility service area or other (relatively) small 
regions. The other scale encompasses large regions (e.g., WECC, the European Union) and uses 
linearized DC load flow approximations of aggregations of transmission facilities, as well as 
simplified representations of generation technologies (using classes of technologies rather than 
individual generating units with unique operating characteristics). The latter can be viewed either 
as simplifications of smaller scale methods that are applied to larger regions, or, alternatively, as 
improvements upon regional siting models and other long-used tools (such as ICF’s Integrated 
Planning Model [60]) that build in more detailed sub-regional representations and replace 
transshipment (“pipeline”, “pipe and bubble”) representations of transmission with more realistic 
linearized DC load flows. 

2.3.2 Review of co-optimization models 

2.3.2.1 National policy tools 

The generation planning tools mentioned in Section 2.2.1 are mainly designed for analyses of 
regional power systems, while the following tools are mainly employed by governments and 
regulatory bodies to study the power system on an inter-regional, interconnection, or even 
national level. For instance, USEPA and USDOE use national models with (highly) simplified 
representations of interregional transmission constraints.  Some of these models, however, are 
used to assess the potential profitability of generation investments considering the reaction of the 
rest of the market.  Table 2-2 below summarizes several national policy tools and their 
characteristics. Section 3 of this report summarizes several additional models that can be used for 

                                                                                                                                                             
also zero.  One result of these laws is that power travels in parallel paths between sources and sinks, and another is 
that given a set of sources and sinks, the flow over any given line is completely determined and cannot be controlled.  
More generally, however, phase shifters and other FACTS devices can be introduced into a network, which allows 
for partial control of flows. 
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co-optimization at the national or large region level; the models in that section tend to have more 
detail on power system transmission and generation, and less on other energy forms than some of 
the comprehensive models in Table 2-2 (especially MARKAL and NEMS). 

There are three key differences between planning and national policy tools. First is the level of 
spatial aggregation. National planning tools have low spatial resolution. For example, in some 
global versions of MARKAL, all of Europe is represented as a single node; while in IPM, there 
are on the order of 10-20 regions representing the United States. However, in many regional 
planning tools, the regional aggregation is user-specified, normally containing much more detail. 
For example, PLEXOS can operate at 3 types of geographical units: regional, zonal, or nodal. 

The second key difference is the user. National planning tools are mainly (but not solely) used by 
regulatory bodies and governments, while regional planning tools are widely used among 
utilities, ISOs, and many consulting firms. 

The third key difference is that national tools often explicitly consider price formation in fuel 
markets, such as the coal and natural gas supply curves considered in IPM. In contrast, regional 
tools take fuel prices as fixed input assumptions, and instead treat the electric power system itself 
in much more detail.  
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Table 2-2. National policy and planning tools [59, 60, 104] 

  National Energy 
Modeling System 

(NEMS) 

ICF 
Integrated 
Planning 

Model (IPM) 

MARKAL/ 
TIMES 

PLEXOS WASP-IV 

 

Output 

Optimal electric 
and other energy 

sector investments 
& operations 

Optimal 
generation 
investment 

Optimal 
electric and 
other energy 

sector 
investments & 

operations 

Optimal 
electric and 
natural gas 

sector 
investment and 

operations 

Optimal  
generation 
investment 

plan 

 

 

Optimization 
model 

Objective 
function 

Equilibrium model 
(not optimization) 

Minimize cost Minimize cost Minimize cost Minimize cost  

 

Stochastic 
scenarios 

√  √ √ √ 
 

Formulation 
Modular Linear program LP, 

generalized 
network 

LP, MIP Generalized 
network, 
modular 

 

Forecast horizon   20-25 years 20-25 years Unconstrained 10-50 years 30 years  

Sustainability 

Greenhouse 
gases 

√ √ √ √ √ 
 

Other 
emissions 

√ √ √ √ √ 
 

Fuel depletion √  Partial (step 
supply curves) 

√  
 

Reliability  
     Loss of load, 

N-x 
Loss of load  

 

Energy 
represented 

Primary 
energy sources 

√ Natural gas, 
coal supplies 

√ √  
 

Electricity √ √ √ √ √  

Liquid fuels √    √    

Transportation 
Freight 

√  Only fuel 
demand 

   
 

Passenger √  √     
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2.3.2.2 Co-optimization models for detailed transmission planning 

Co-optimization models are considered in detail in Section 3, but we summarize some basic 
features here.  

The transmission expansion planning problem is typically regarded as a nonlinear, highly 
complicated problem.  These complexities justify application of advanced optimization 
algorithms such as the branch-and-bound method for mixed integer programs, Benders 
decomposition, and heuristics such as genetic algorithms. 

Co-optimization models that attempt to tackle the computationally difficult aspects of 
transmission planning date back to 1970s where linear mixed integer programming models were 
proposed [114]. Nearly all of these were research efforts, and have not been implemented as 
commercial software. A Benders decomposition-based approach was developed to separate and 
coordinate the investment problem and operating subproblems [102]. Reliability issues were 
assessed in terms of customer interruption functions in co-optimization models [77], allowing 
tradeoffs between outage, investment, and operating costs. However, earlier models were 
oversimplified and thus deemed impractical for market-based generation and transmission 
expansion planning. 

Additional research efforts in the last two decades were made to address the co-optimization 
problem in electricity markets. In general, co-optimization is viewed as a bi-level optimization 
problem for generation and transmission and iterative approaches have been widely used to 
coordinate the two planning problems [2,88,92,118].  For instance, Baringo and Conejo [7] 
presented a bi-level stochastic co-optimization model and transformed it into a single-level 
mathematical programming with equilibrium constraints. It was shown that transmission 
expansion decisions significantly affect wind power capacity expansion even though investment 
cost in transmission expansion is much lower than that in wind power capacity. 

A variety of market features and complications have been included in proposed co-optimization 
models. A recent study in [129] presented a co-optimization model that incorporated 
transmission congestion costs. It was shown that distributed generation could mitigate congestion 
and defer transmission investments. A follow-up study in [130] proposed a co-optimization 
model which accounted for incentives offered to independent power producers (IPP). Reference 
[48] introduced a multi-area co-optimization model with short-term power system operations 
strategies. It was demonstrated that the proposed model could offer considerable economic 
benefits in power pools. A follow-on study in [65] presented a microgrid-based co-optimization 
model which incorporated investment and operation costs of local microgrids into the co-
optimization objective function. It was shown that considering microgrid investments in the co-
optimization problem could provide significant reliability and economic benefits. In addition, 
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[110] proposed a capacity payment mechanism in the co-optimization model for transmission 
and generation facilities. 

Uncertainty has been a focus of much research in co-optimization.  Stochastic programming was 
applied in [80,111] to simulate random outages of system components. It was demonstrated that 
even simple co-optimization models could result in significant savings when optimizing 
transmission and generation assets. Stochastic programming was also applied by [142] to 
consider alternative scenarios of future economic, regulatory, and technology developments.  
However, in comparison with the deterministic co-optimization models, the stochastic models 
may lead to higher investment costs since additional generating units and transmission lines 
would have to be installed to handle uncertainties. 

2.3.2.3 Summary of existing co-optimization models 

This section presents a summary of the detailed review performed on some existing co-
optimization tools using Table 2-3.  

Table 2-3. Summary of existing co-optimization models 

Model Name Developer Trans 
Investments 

Optimizer Time-step/ 
Horizon 

Sectors 

NETPLAN Iowa State 
University 

Pipes 

Continuous 

LP (simultaneous 
multi-period 
optimization) 

Hourly or monthly 
or yearly/ 40-years 

Electric, Fuel, 

Transportation 

Iterative gen-
trans Co-

optimization 

Iowa State 
University 

AC/ DC 

Binary/ 
Continuous 

Iterative LP (gen.) and 
MILP (trans.) / 

Bender's 
decomposition for 

large problems 

Hourly or monthly 
or yearly/ 40-years 

Electric 

Meta-Net Lawrence 
Livermore 

National Lab 

Pipes 

Continuous 

Market equilibrium 
model 

Hourly/ Yearly 
(sequential if 

multiple years)  

Electric, Fuel, 
Transportation 

COMPETES Energy Research 
Centre of the 
Netherlands 

AC/DC 

Continuous 

LP (iterative to solve 
nodal balance and 

linearized DC model) 

Samples of hour / 
Yearly (sequential 
if multiple years)  

Electric 

Stochastic 
Transmission 

Planning 

Johns Hopkins 
University 

AC 

Binary 

MILP (non-iterative) / 
Bender's 

decomposition for 
large problems 

Hourly or daily/ 
50-years (multi- 

stages) 

Electric 

ReEDS National 
Renewable Energy 

Lab 

DC (single 
stage lag in line 

impedance 

LP (multi-stage multi-
period optimization) 

Samples of hour/ 
40-years (2-year 

sequence)  

Electric 
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The detailed reviews of above models are presented in Appendix II. The reviews cover the 
following aspects of each of the tools, namely, the infrastructure sectors modeled, the types of 
infrastructure investment decisions made, the computational model, the associated optimizer and 
solvers, and other planning attributes such as network modeling (AC vs. DC vs. pipes-and-
bubbles), optimization time steps, how uncertainties are handled, and the modeling of demand-
side options. The reviews also present the development status of each tool, along with their 
limitations and possible improvements. We note that these existing co-optimization models differ 
in how they model each of the attributes that were discussed in Sections 2.3.1-2.3.4.  

Table 2-4 presents a summary of few other planning tools which are not among the models 
reviewed in Appendix II but are extracted from the publication [20]. These tools are highlighted 
here because they are capable of performing long-term investment planning in the energy sector 
(including electric generation and transmission network) over a wider geographical region. In 
contrast, we do not consider software that assesses a single plant’s economics or that analyzes 
energy supply only for the heat/transportation sector or small-scale micro-grid/community. 

update)   

PLEXOS Energy Exemplar 

LLC 
AC/DC Lines 

Interfaces 

 

MIP, Stochastic 

Optimization 
Chronological 

or Duration 

curves 

Electric 

Natural Gas 

Prism 2.0 Electrical Power 
Research Institute  

Pipes 

Continuous 

General equilibrium 
economy model 

(iterative to equilibrate 
couplings) 

Samples of hour / 
Yearly (sequential 
if multiple years)  

Electric, Fuel, 
Transportation 

REMix German 
Aerospace Center 

DLR  

AC/DC 

Continuous 

LP (static investments 
at beginning) 

Hourly/ multi-year Electric/Heat 

SWITCH University of 
California, 
Berkeley 

Continuous  MILP (non-iterative); 
modeled through 

AMPL; uses Cplex  

Sampled hours in 
sampled 

days/multi-year   

Electric  

LIMES Potsdam-Instituts 
für 

Klimafolgenforsch
ung 

Continuous  LP   Aggregate hours 
(6 hours per time 
slice) in sampled 

days/40-year  

Electric 

GENTEP Illinois Institute of 
Technology 

AC/DC 

Binary/Continu
ous 

MILP / Bender's 
decomposition 

Hourly or monthly 
or yearly/ multi-

years 

Electric 
(includes 

microgrid) 
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Table 2-4. Summary of other generation and transmission system planning tools 

Tool Computational 
Method 

Tool Description Developer Time-step Sector 

BAL-
MOREL 

Partial equilibrium 
model 

Open source 
electricity and 

district heating tool 

Open source (Danish 
tool) 

Hourly Electric/ 
Heat/ 

Transport 

E4cast Equilibrium model Energy projection, 
production, and 

trade 

Australian Bureau of 
Agricultural and 

Resource Economics  

Yearly Electric/ 
Heat/ 

Transport 

EMCAS Optimization using 
agent based 

electricity markets 

Creates techno-
economic models of 
the electricity sector 

Argonne National 
Laboratory 

Hourly Electric/ 
Transport 

IKARUS Linear cost-
optimization 

scenario model 

Bottom-up cost- 
optimization tool for 

national systems 

Institute of Energy 
Research at Research 

Centre, Germany 

5 years Electric/ 
Heat/ 

Transport 

MARKAL 

/TIMES 

Equilibrium model Energy-economic 
tools for national 
energy-systems 

International Energy 
Agency 

Hourly- 
monthly/ 
samples 

Electric/ 
Heat/ 

Transport 

MESSAGE Partial equilibrium 
model 

National or global 
energy-systems in 
medium/long-term 

International 
Institute for Applied 

Systems Analysis 
(IIASA), Austria 

5 years Electric/ 
Heat/ 

Transport 

ORCED Equilibrium model Simulates regional 
electricity-dispatch 

Oak Ridge National 
Laboratory (ORNL) 

Hourly Electric/ 
Transport 

PERSEUS Multi-periodic 
linear 

programming 

Family of energy 
and material flow 

tools 

Institute for 
Industrial 

Production, 
Universität 
Karlsruhe 

36-72 
slots 

(days) per 
yr 

Electric/ 
Heat/ 

Transport 

WASP Optimization Identifies the least-
cost expansion of 

power-plants 

International Atomic 
Energy Agency 

12 LDC 
per year 

Electric 

 

2.3.3 Network representation - Model fidelity  

In this section, we are summarizing the pros and cons of the different choices one has in 
representing the network within a co-optimization model. These choices include modeling 
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fidelity, i.e., in decreasing levels of fidelity- an Alternating Current (AC) model, a Direct Current 
(DC) model, a network flow model, or a hybrid model. Each of these modeling brings in a 
number of benefits to system operation management and planning, and with enhanced fidelity 
comes the associated computational complexities for solving the resulting optimization problem.  

2.3.3.1 AC power flow model – Optimizer, investments and data 

Optimizer: An AC model consists of complete representation of real and reactive power flows 
in the transmission network governed by electrical laws, which is expressed in terms of a non-
linear function of network states, namely bus voltages and angles, and network parameters 
(impedances). The AC optimal power flow (ACOPF) problem is formulated as an economic 
generation dispatch problem with network security constraints. The comprehensive formulation 
enables simultaneous management of real power (P) demand with voltage (V) and reactive 
power (Q) requirements, which are otherwise accomplished by proxy methods or multi-stage 
planning approaches with relaxed versions of ACOPF that are applied in the current operational 
and planning environment. Along with the non-linear power flow relations in the ACOPF, the 
continuous generation expansion variables and integer transmission expansion variables make 
the co-optimization a Mixed Integer Non-Linear Programming (MINLP) problem, a very 
complex optimization problem to solve.  

A complete mathematical formulation of ACOPF based generation and transmission planning 
model (ACOPF-GTEP) is presented using equations (1-12) in Appendix I.2. The ACOPF-GTEP 
problem is a non-convex MINLP problem due to the presence of integer variables and non-linear 
relations (shown in equations (2, 3, 4, 5, and 8) of Appendix I.2). The above described problem 
is according to co-optimization definition-A, i.e., simultaneous optimization of generation and 
transmission expansion. If the co-optimization definition-B is adopted, then the problems can be 
broken into NLP model for generation expansion and MINLP of reduced size for transmission 
expansion. Nevertheless, even without considering the network expansion part, the ACOPF itself 
is an extremely difficult non-convex optimization problem to solve with convergence and 
computation related challenges, which makes it impractical to apply in real world applications 
[17]. Studies are yet to convincingly quantify the added value of co-optimizing voltage and 
reactive power flows (i.e., better resource utilization, pricing & global welfare maximization) 
against the severe computational deadlocks such models pose. 

Algorithms: Though extremely challenging, such models are not unsolvable and many 
techniques are being explored. Typically such nonlinear optimization problems involve iterative 
methods with basic steps including [17]: choosing an objective function to optimize, choosing an 
initial solution x0 at k=0, choose a search direction dk, choose an appropriate step size sk to 
update the solution vector xk, and repeating this search until convergence criteria is met. There 
are numerous methods for each of these steps, which thereby differentiate the many available 
solvers or algorithms for solving such non-convex/non-linear problems and their convergence 
rate (i.e., linear or faster than linear), numerical stability and computational properties. Some of 
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the available methods for unconstrained non-linear optimization problems are conjugate gradient 
method, quasi-Newton method, Newton’s method, Gauss-Seidel method, and steepest descent 
method. In the case of constrained non-linear optimization problems, Lagrangian Function is 
used to transform them into unconstrained dual (Lagrange multipliers) optimization problem. 
Iterative methods including penalty and augmented Lagrangian methods, barrier or interior point 
methods, sequential linear programming and quadratic programming methods are often used to 
solve such generalized Lagrangian functions. The expansion problems with integer variables 
render the problems even more difficult, and are generally attempted to solve using variations of 
branch and cut methods in combination with above mentioned methods for NLP. MINOS, 
IPOPT, SNOPT, KNITRO and CONOPT are some of the commercially available solvers for 
such MINLP and NLP problems.  

Model Relaxation: There are several ways in which the MINLP formulation of ACOPF-GTEP 
model can be relaxed to models with reduced complexities [148]. One way to simplify the model 
is by using a decoupled power flow formulation or removing the reactive power flow parts 
altogether (corresponds to equations (5) and (10) in Appendix I.2), while still capturing the 
interactions between bus voltage magnitude and real power transfers.  

Another way is to use binary variable instead of integer decision variable, thereby changing the 
decision from how many transmission lines to be built to whether or not a candidate transmission 
be built. This replaces the integer variable with multiple stages to a variable with two stages (0 or 
1), thereby reducing the problem complexity. The relaxation of ACOPF-GTEP full model using 
binary decision variables are shown using equations (13-18) in Appendix I.2. The relaxed model 
using binary variables allows for further relaxation of the complex MINLP problem using a 
disjunctive formulation based on the big “M” method [148], thereby making it a MILP problem. 
A further relaxation of the model is by using a continuous decision variable for transmission 
investment, as shown by equation (19) in Appendix I.2.  

Investment options: The investment options in a multi-period ACOPF-GTEP model are: 

1. Generation: where, when and how much of different technologies to be invested.  

2. Transmission: where, when, how many transmission lines to be invested (if integer), 
should there be investment in a particular line (if binary). 

3. AC transmission technologies: The ability to choose between different voltage levels for 
AC transmission can also be embedded by designing candidate arcs with appropriate arc 
operational and investment characteristics (i.e., cost, losses, capacity) for respective KV 
levels, and each will its own binary decision variable. 

4. FACTS devices: Investments in FACTS (series and shunt devices) can be considered in 
ACOPF formulation, as shown by equation (20) in Appendix I.2. These shunt devices 
help in providing the required reactive power and regulating the system voltage within 
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specified security limits. Long distance real power transmission over AC lines involves a 
commensurately high reactive power transfer, which causes a drastic decrease in bus 
voltage at the receiving end (load centers) and thereby inhibits the power transfer 
capability and causes voltage stability issues. Therefore considering FACTS devices 
within the formulation allows weighing the available options and deciding whether to 
invest in more transmission or reinforce the existing transmission using FACTS at the 
load side. 

Data preparation: The data required to run a co-optimization model basically includes data 
pertaining to historical and forecasted system conditions (mainly related to real power load 
patterns and variable generation), system topology, operational and physical characteristics of 
existing and planned electric infrastructures, available options for generation and transmission 
investments and their operational and investment attributes, and finally the scenario descriptions. 
With AC formulation, the additional data required will be pertaining to reactive power and 
voltage, which include generator capability curves, reactive power limits, and voltage set points; 
transmission line apparent power rating and complex impedances; bus voltage limits; and cost of 
FACTS devices. 

2.3.3.2 DC power flow model – Optimizer, investments and data 

The direct current (DC) OPF problem is a linearized approximation of the power injection 
formulations of ACOPF problem, which has been very prevalently used in real-world operating 
and planning applications. The DC model basically consists of two relations, real power flow 
which is directly proportional to angle difference (in radians) and reactive power flow which is 
directly proportional to bus voltage difference (shown by equations (21-22) in Appendix I.3). 
Typically, the power system operations are cost optimized for real power flows and meeting the 
real power demand, and hence only equation pertaining to real power flow (also known as B-
theta model) is used in practical market and planning applications. 

Optimizer: Though the DCOPF model in itself is a LP, an optimization realm which is quite 
advanced in terms of solution techniques and available stable solvers; the DCOPF based 
generation and transmission expansion problem (DCOPF-GTEP) is MINLP, a non-linear and 
non-convex problem with the introduction of transmission investment integer variables in the 
formulation. The constraints of this problem are shown using equations (23-29) in Appendix I.3, 
along with which equations (7, 9, and 12) in Appendix I.2 related to voltage angle and generation 
capacity should also be included. Again, with the use of binary decision variable for transmission 
investments and a disjunctive formulation, the MINLP model can be relaxed to a MILP. This 
disjunctive formulation based on big “M” method is shown in Appendix I.3 using equations (30-
32). There are many stable solvers both commercial and non-commercial including CPLEX, 
Gurobi, LINDO, Mosek, GLPK, and lp_solve for solving MILP problems. Nevertheless, 
problems of bigger size, though solvable, are computationally intensive. The MILP formulation 
can be further relaxed to an LP problem by assuming the transmission investment variable as 
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continuous. Such relaxed models with lesser computation may provide a way to screen the 
candidate locations or corridors, so that the full scale model can be run with reduced dimension. 

Investment options: The investment options in multi-period DCOPF-GTEP model are: 

1. Generation: where, when and how much of different technologies to be invested.  

2. Transmission: where, when, and if there be investment in a particular line (if binary). 

3. AC transmission technologies: The ability to choose between different kV levels of AC 
transmission can be embedded by designing separate candidate arcs for each voltage with 
appropriate arc operational and investment characteristics. 

The downside of this DC approximation of non-linear AC relations is loss of model fidelity, in 
that the DCOPF does not incorporate voltage variables. Therefore, the resulting expansion 
solution has to be validated using a full AC model in order to assess its feasibility in meeting 
network security constraints. If there are violations of some reliability metric, then the DCOPF 
based MILP expansion problem has to be iteratively run with added constraints to have a proxy 
representation of security limits, until the expansion solution results in no more reliability 
violations. Some approaches are: 

1. Impose limits on investment variables that are causing security limit violation (as done in 
[72]), which constrains MSC allocation amount in every iteration of reactive power 
planning problem in order to respect voltage magnitude limits).  

2. Impose limits on decision variables’ attributes, such as that modeled by St. Clair curves3

3. Using linear sensitivities to model constraints that incorporate management of network 
security limit within the overall optimization. For instance, linear sensitivities of bus 
voltage magnitude and voltage stability index with respect to generation and transmission 
expansion variables can be used to model the estimated impact of investments on 
network reliability, and appropriately optimize. This method also allows to incorporate 
FACTS devices’ investments within the overall MILP based GTEP co-optimization. The 
linear sensitivities have to be updated before each iteration. 

 
for AC transmission line capacity with respect to distance. The curve limits the 
operational capacity of the transmission line for the same investment cost, in order to 
avoid voltage stability issues due to high transfers in long distance AC lines. 

                                                 
3 These curves derived from empirical studies, also known as power-transfer capability curves, are used to estimate 
the maximum loading limits on transmission lines as a function of its length. The loading limits for various voltage 
levels are expressed in terms of Surge Impedance Loading of the line, and it takes into account thermal, voltage 
stability and angular stability limits associated with that line’s loading. 
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Data preparation: DCOPF-GTEP model has lesser data requirements than ACOPF-GTEP 
model. Of the complete set of data mentioned in Section 2.3.3.1, data for network resistances, 
bus voltage limits, generator reactive power limits and voltage set points, transmission line 
reactive power limits and FACTS data (in most cases) are not required. 

2.3.3.3 Network flow model – Optimizer, investments and data  

In this model, the transmission network is represented similar to transportation pipelines, which 
move a commodity from one node to another node in the network subject to an efficiency 
parameter representing transportation losses. Such a model respects the nodal balance constraint 
at every node and transmission flow limits, but not electrical laws. Figure 2-8 shows network 
flow representation of a power network using one-line diagram for two connected periods t and 
t+1. It is to be noted that generation (modeled by arc EG_EL and EW_EL), transmission 
(modeled by arc EL_EL) and demand (modeled by arc EL_L) are all represented as arcs, with 
appropriate values for its operational and investment cost, bounds, and efficiency properties. 
Cost of power flows across all arcs are subject to efficiencies and capacity bounds, and the 
required arc capacity expansions are minimized by the network flow optimization.         

         
(a) Power network    (b) Multi-period network flow equivalent 

Figure 2-8. Power system represented using network flow model 

Optimizer: The network flow model based linear programming cost minimization formulation is 
shown in equations (33-36) of Appendix I.4, which minimizes the operating and investment 
costs. Since, both generation and transmission arcs are considered as transportation pipelines 
(with different properties), the only relation that governs this model is the nodal power flow 
balance equation (equation (34) in Appendix I.4).  

The network flow based GTEP problem is easy to conceive and understand. Plenty of evolved 
algorithms are available to solve network flow class of LP problems. There is tremendous scope 
to speed up such problems using decomposition and parallelization methods [13], and 
advancements are being made in solving larger sized linear network flow problems using high 
performance computing [27]. 
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Investment options: The investment options in multi-period network flow based GTEP model 
are: 

1. Generation: where, when and how much of different technologies to be invested.  

2. Transmission: where, when, and how much of transmission to be invested (continuous 
variable). 

3. Transmission technologies: The ability to choose between different transmission 
technologies can be embedded by designing separate candidate arcs for each. However 
the differentiation can be made only with respect to operational and investment 
characteristics, and not based on equations governed by realistic electrical laws as can be 
done using AC and to some extent with DC power flow models.  

Again, the downside of this approximation using a transportation model is increased loss of 
model fidelity, in that it does not incorporate voltage variables and the relationship of real power 
transfers with the bus angle difference and line impedance. The solution may see higher amounts 
of transmission flows than what could actually take place. Therefore, the resulting expansion 
solution has to be validated using a full AC model in order to assess its feasibility with respect to 
network security constraints. If there are violations of some reliability metric, then the expansion 
problem has to be iteratively solved with proxy constraints for enforcing security as discussed in 
Section 2.3.3.2, until the expansion solution results in no more reliability violations. 

Data preparation: A network flow model has even lesser data requirements than a DCOPF-
GTEP model. It will not require network impedances, bus voltage magnitude and angle limits, 
generator reactive power limits and voltage set points, transmission line reactive power limits 
and FACTS data. 

2.3.3.4 Hybrid model 

A hybrid model is one that may represent transmission lines with mixture of the above three 
described models. A typical and valid scenario of this representation may be consideration of 
both AC and DC transmission technologies in the model. In this case, DC lines are modeled as 
real power injections (positive and negative, as shown in equation (37) of Appendix I.4) at both 
the ends of the lines, which effectively translate to modeling it as a transportation pipeline. 
Therefore the resulting model will be either a hybrid of AC and network flow models or DC and 
network flow models.  

Other situations where a hybrid model of transmission lines may be used are: 

1. Study area emphasis: If a particular area alone is of interest within an interconnected 
power system, the transmission lines within that area may be modeled with high fidelity, 
while the lines external to the area may be approximated to transportation model with 
power injections into and out of the area.  
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2. Aggregated model: If a bigger geography is analyzed with highly aggregated generation 
and transmission capacities; then a transportation model may be used to assess the inter-
regional bulk power transactions. 

All discussions pertaining to optimizer, investment options and data apply accordingly to the 
hybrid model based on the combinations of choices made.  

A high level summary of pros and cons for different network representation is presented in Table 
2-5, and Table 2-6 provides pros and cons related to some of the commonly used optimization 
features. Depending on the choices, a hybrid model will have respective pros and cons. 
 

Table 2-5. Pros and cons of network representation - Model fidelity 

Choices Pros Cons 

AC model High P & Q model fidelity Requires MINLP solver- excessive 
computation & data preparation 

DC model Good P fidelity, can use linear solver No Q-V information (may need feasibility 
check using full AC model) 

Network 
flow 

Highest computational efficiency, 
reduced data preparation 

No impedance effects, poor model fidelity 

 
Table 2-6. Pros and cons of optimization features 

Choices Pros Cons 

Non-iterative Obtains optimal solution Excessive computation 

Iterative Faster, more flexible Sub-optimal solutions; may not converge 

Linear continuous Very fast Cannot capture discreteness in solutions 

Linear mixed integer Captures discreteness in solutions Computation is significant 

2.3.4 Network representation - Modeling coverage  

There are at least two kinds of modeling choices that decide the degree of network coverage– 

1. Sector/resource coverage: whether to represent any of the fuel (gas and coal) networks, 
flexible generation and demand side resources  

2. Geographical coverage: how much of the electric network to represent (e.g., the region or 
the entire interconnection) 
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Benefits of representing increased model coverage are the ability to account for more investment 
options, and the costs of doing so are increased burden of data preparation and computational 
requirements. 

2.3.4.1 Sector/resource coverage  

In this subsection, we are describing the modeling and computational cost of including additional 
decisions within a generation/transmission co-optimization planning, including fuel network 
(coal, gas), demand response and storage.  

Fuel network: The fuel networks are very much a part of energy sector. If one considers electric 
and transportation networks as the end-users in the energy sector, then the fuel networks can be 
considered as the source. Figure 2-9 shows a high level schematic diagram of an energy network, 
where three different yet interconnected subsystems are represented: coal, natural gas, and 
electricity sub-systems. The coal network can be modeled using information related to its 
production (CP) and transportation (1T). Similarly, natural gas network can be modeled using 
information on production (NP), pipeline transshipment (NT) and storage (NS) facilities. The 
flow limits of various arcs can be treated as the capacity of the different infrastructure 
components, and can be allowed to expand subject to investments. 

 

Figure 2-9. Fuel sources represented within energy sector [71] 
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Features of optimizer: 

1. Market equilibrium model: A market equilibrium model is one that, though it models the 
interconnections between various source and end user sectors, optimizes the operations 
within each sector in isolation. The market equilibrium condition for each sector is 
satisfied, given the demand and supplier entities’ bids. The demand from end-user sector 
is passed on to the source sectors, and finally each sector is at equilibrium with each other 
and marginal market prices are ascertained. Based on the modeling of bids functions, the 
model will be linear or non-linear. Typically such models are solved for hourly market 
operating conditions, and investments are made at yearly time steps.  

In this model the market constructs and the signals, including marginal prices of a 
particular resource, congestions and the economic metrics such as payback assessments, 
drive the investments. In a certain sense such market equilibrium models can be seen as 
market simulation tools, and not a tool that optimizes for investments considering the 
overall integrated energy sector.  

2. Linear programming: Integrating the different pieces of the energy sector using a 
network flow model, allows for minimizing the overall cost of meeting energy 
requirements across all the interdependent sectors using a large yet interesting linear 
programming problem. Usually for such multi-commodity models, each sector’s 
operations may be optimized at different time steps, typically dictated by the degree of 
variability in the respective commodity’s value. Such optimization models provide 
perspectives on what the global energy policy strategies should be by representing 
infrastructure investments as decision variables to meet the integrated energy sector’s 
requirements and not isolated requirements. Such models also provide signals to consider 
alternate market constructs. If the energy transfer medium such as natural gas pipelines 
and transmission lines are modeled using non-linear equations for a higher fidelity, then 
the optimization problem becomes NLP or MILP.  

In any case, multi-sector modeling will increase the computational cost, and may require some 
degree of component/spatial aggregation (regions) within each sector and reduced temporal 
granularity for optimization. 

Investment options: Apart from generation and transmission investment options, such a model 
further includes: 

1. Gas pipeline and storage: where, when and how much to invest 

2. Coal/oil transportation mode: where, when and how many of which mode (train, truck) to 
invest 
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A co-optimization model including all the sectors promises to provide notable benefits, as it 
optimizes considering overall energy needs. It opens up many opportunities to shape the future 
infrastructure portfolio or assess the merits in alternative strategies. For instance, Figure 2-10 
shows the options available for generation expansion when both pipeline and transmission line 
expansions are co-optimized. Some interesting alternatives could be, natural gas generation can 
be sited close to the load with associated expansion in pipelines or sited far away from load 
center with associated expansion in transmission lines or a combination of both. Investments in 
transmission and natural gas units may also provide flexibility and support economic renewable 
integration. Therefore, a co-optimization tool that considers all these inter-related options may 
find expansion solutions with long-term benefits, emissions reductions and operational flexibility. 

  

 

Figure 2-10. Tradeoff between pipeline/transmission investments 

Data preparation: Increasing modeling coverage to include fuel networks will increase the 
burden of modeling and data preparation. The data preparation step may include a data 
aggregation step also for a spatially aggregated model, which will further require information on 
proper regional boundary demarcations and data filtering. Data additional to the electric network 
include fuel network topology and geographical characterization of investment cost, fuel cost 
and capacities. For instance, 

1. The availability and quality of coal differs geographically, and so the availability, cost 
and transportation links for all varieties of coal may be required.  

2. The gas imports/exports, pipeline and storage capacities could be characterized based on 
geography. 

Storage technologies/demand response:  

Storage technologies can be modeled by representing the three operations of a typical unit, 
namely, charging, discharging and reservoir dynamics. Conceptually a storage technology’s 
discharge operation is similar to a generator operation and charge operation is tantamount to 
loading the system. The reservoir dynamics of storage must update the energy status periodically 
based on the current period’s injections and withdrawal, subject to the charging/discharging (or 
round-trip) efficiencies and stored energy until the previous period. Each operation, charging and 
discharging will have their marginal costs, based on which they will be dispatched. Depending 

Wind Gen 
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on the type of storage technology (based on their storage capacity), i.e., bulk storage 
(compressed air energy storage, pumped hydro, large batteries) or short-term (flywheel, 
superconducting magnetic energy storage, batteries), the grid services they provide differ. Bulk 
storage technology is able to provide a wide range of grid services through both its charging and 
discharging operations, namely peak shaving, regulation, spinning and non-spinning reserves. 
Short-term storage technologies are generally used for providing regulation services.  

The modeling of demand response in a certain sense can be conceived as a special case of 
modeling charging side of storage, i.e., a dispatchable load. Demand side services can be 
provided from loads that are price sensitive, emergency interruptible, and also certain kind of 
storage systems like ice-storage. 

Apart from providing good flexibility both these technologies provide very significant benefits in 
terms of economics and system reliability by virtue of their capacity, and have the ability to defer 
or replace any generation or transmission expansion plans. Hence their consideration within the 
overall co-optimization tool provides a wider solution space to the long term planning problem.  

Features of optimizer for Storage: The optimization formulation depends on the kind of 
storage technology being integrated and the goal of the study. Some of the optimizer features that 
the storage integration can influence are: 

1. Inter-temporal constraints and simultaneous multi-period optimization: A storage 
technology’s reservoir modeling introduces inter-temporal constraints, and hence 
necessitates optimizing simultaneously over multi-periods in order to economically 
manage reservoir status while providing grid services through charge/discharge 
operations. The basic relation needed is that the stored energy at period t must comprise 
of energy stored up until period t-1 less any leakage, plus (less) the energy to be charged 
(discharged) at period t. 

Typically the requirement to simultaneously optimize multi-periods increases the 
problem size, which can be controlled by assuming a reasonable operating cycle (2-day 
or weekly) for storage with end/boundary condition on reservoir energy status.  

2. Time steps and operating states: Depending upon the focus of the study, an appropriate 
optimization time step will be necessary. Apart from portfolio optimization, if the scope 
of the planning tool is to also assess the economic benefits of storage, then the tool 
should be able to model the ability to dispatch the storage for making profit from 
arbitrage opportunities [23]. In this case, an hourly (or even a sub-hourly) time step for 
optimizing the operations will be ideal to capture the strategic dispatch of storage with 
respect to price sensitivities. 

Furthermore, bulk storage technologies will have three states, namely, charge, discharge 
and idle. Based on the system conditions, the unit is usually in one of these states, which 
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is decided by a unit commitment program that uses the unit’s physical characteristics and 
start-up/shut-down costs. The unit commitment is minimally a MILP problem. 

However, if economic assessment and high operational fidelity are not the criteria, then a 
simpler model that captures the basic storage relation as mentioned in point 1 above and 
assessed for certain samples of hourly system conditions (including peaks) will be a good 
beginning. This will enable co-optimizing storage along with generation and transmission 
resources, while also ensuring the optimization problem is LP. 

3. Short-term technologies: While the above two points are mostly applicable to bulk 
storage technologies, a short-term technology with very limited energy capacity and 
ability to make very fast zero-cost transitions, and generally requires an assessment at 
smaller time scales (sub-hourly, say 5-minute dispatches) to assess their participation and 
profitability in providing regulation services. Though the problem remains an LP, it 
increases the problem size and may not be ideal for a long-term resource planning tool.  

 However, if the required capacity for ancillary services is estimated and represented in 
the long-term investment planning tool [71], then such devices’ capacity subject to their 
utilization factor [139] can be considered in the overall portfolio planning. 

Demand Response: The second point discussed above for the storage technologies on the usage 
of hourly optimization time steps is also applicable to demand response modeling, when the DR 
modeling includes dispatching it based on system prices and representing the discrete states of an 
interruptible load. However, as mentioned in point-3, a model that incorporates the available 
MW on the demand side for load management, along with the appropriate $/MW price and 
capacity factor can use relatively longer optimization time steps. This will be a reasonable 
beginning to represent demand side resource in a long-term resource planning tool, considering 
the computing requirements. By representing important hourly samples of system conditions, 
demand side options’ competitiveness in portfolio planning along with other generation and 
transmission options can be assessed. 

Investment options: Apart from generation and transmission investment options, such a model 
further includes: 

1. Storage technologies: where, when, how much of each to invest, i.e., configuration of 
charging, discharging and reservoir capacity. 

2. Demand response: where, when and how much to invest 

Since, demand response addresses the system flexibility needs at one of the sources that cause 
short-term and long-term variability, i.e., system load, it will compete against generation and 
transmission projects which may otherwise be needed for meeting peak system needs.  
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Similarly, storage technology providing energy services to the grid may displace the peaking 
units at the top of the generation stack, and by virtue of their competitive ramping rates may 
obviate the need to invest in fast ramping combustion turbine units under increasing renewable 
penetration. Bulk storage may also act as a virtual transmission access, when optimally sited 
close to demand along the congested transmission path [24]. 

A planning tool that models operational reserve requirements and monetizes the conventional 
fossil-fuel fired unit’s cycling phenomenon will increase the value of storage and demand 
response among the available resource options.  

Data preparation: Integrating storage and demand side options will increase the burden of 
modeling and data preparation. Data related to technology investment cost, life, and other 
operational attributes such as variable cost, capacities, efficiency, ramp rate, grid services and 
unit commitment related data (if needed) are to be prepared. For short-term storage, a good 
estimation of their long-term utilization factor is necessary. Data for a conventional unit’s 
cycling and costs will be useful. Table 2-7 provides pros and cons related to modeling additional 
sector and resources. 

 
Table 2-7. Pros and cons of network coverage - Sector/resource 

Choices Pros Cons 

Fuel network 

(coal, gas) 

Investigate sector interactions 
(gas-electric) 

Excessive computation and data preparation 

Integrated investment options NLP if pipelines modeled using non-linear 
equations 

Storage/demand 
response 

Add flexibility, enhance wind 
penetration 

Excessive computation and data preparation, 
Inter-temporal constraint for storage 

Investigate gen/trans 
investment deferrals 

To capture arbitrage/ancillary, may require 
optimization at hourly (sub-hourly) time steps 

2.3.4.2 Spatial granularity and geographical coverage  

Depending upon the network spatial granularity (i.e., nodes at plant level, substation level, 
regional) and extent of geographical scope (i.e., inter-regional, national), different kinds of 
infrastructure related problems can be investigated.  

When optimized at plant-level granularity, the geographical scope may be limited by the model 
size, required data and the associated computational complexities; however several other 
important operational strategies among the resource options can be considered, such as the 
optimal transmission switching [49] for mitigating operational issues. A transmission switching 
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problem is a complex MILP optimization problem, like unit commitment, which provides 
operational solution that may defer the investments in generation and transmission. Studies done 
at this granularity level also allows for considering factors such as plant and transmission line 
maintenance scheduling and retirements within the overall planning.  

To reduce the model size and computational burden involved in investigating infrastructure 
planning at national or interconnection wide geography, some level of system component 
aggregation has to be done. Such model brings in a variety of solution options by virtue of 
modeling the geographical variation in resource availability and economics, and hence helps in 
siting such capital intensive infrastructures with long life strategically for long-term economic 
and sustainability benefits. An aggregated model across wider geography also helps in assessing 
various futures and the portfolio, and provides valuable signals to develop policies and market 
constructs that help in the evolution of any particular beneficial future. 

Irrespective of geographical coverage, the optimizer for a model depends upon the kind of 
decision options modeled. If only continuous capacity variables are considered, the model is LP; 
and if discrete variables are considered such as plant, transmission line investments/retirements 
and other operational decisions such as unit commitment and transmission line switching, then 
the model can become MILP and more complex. Table 2-8 provides a summary of pros and cons 
related to two choices of geographical coverage. 

Table 2-8. Pros and cons of network coverage - Geography 

Choices Pros Cons 

Plant level System level studies, Excessive computation and data 
preparation for large models 

Decisions on generator starts, retirements & 
maintenance, transmission line switching 

Aggregated 
model 

Studies on regional policies and planning 
trajectories 

Data aggregation, regional boundary 
definitions 

Study interconnected systems/sectors Plan implementation and benefit 
identification (cost allocation) 

2.3.5 Additional planning tool attributes  

2.3.5.1 End effects  

The planning problem in reality is an infinite horizon problem. The infrastructure assets typically 
have long lifetimes, and hence in making an assessment among alternative choices, one must 
consider the operational value of assets over their entire lifespan, apart from considering their 
overnight investment cost. However, in addition to being computationally intensive, the solutions 
in the far out years are impractical due to future uncertainties and very insignificant money value, 
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and hence simulation of such a long-term planning problem is truncated at a certain year. This 
induces anomaly in the end year investment solutions, termed as “end effects”. The effect of 
truncation is that near the end of the simulation horizon generally assets with lower investment 
cost, irrespective of their operational cost, are favored by the minimum cost optimization model 
in order to reduce the objective function. There are at least four well-known approaches to 
mitigate this issue [40], whose pros and cons are summarized in Table 2-9: 

1. Extended simulation: The most straight-forward and simplest way is to simulate for a 
longer duration, but report the results only for the desired horizon (T). Though this 
method will eliminate the end effects within the desired horizon by capturing the 
operational value of alternatives, it will necessitate heavy computation.  The additional 
evaluation period is usually known as extension period, many applications typically 
choose about 30-40 years (MISO 2012). To simplify the evaluation, applications assume 
stationary conditions during these years, i.e., no increase in load and no new investments; 
but the investments made up until end period of desired horizon are simply evaluated 
against each other for their operational value. 

2. Salvage value: The method truncates the simulation to desired horizon, but places a 
proxy value on all assets that are carried over from desired horizon into extended future. 
This proxy value is the undepreciated value of the asset at the final year of the simulation, 
which will be subtracted from the total cost-based objective function of the optimization 
problem. This will tend to reduce the bias created by the truncation towards infrastructure 
with low investment cost and lower lifespan. 

3. Primal equilibrium: This method imposes an equilibrium condition on primal variables 
(x) after the desired end period. It assumes for an infinite horizon problem, there will be a 
finite horizon beyond which the decision variables attain equilibrium, i.e., they increase 
at the rate of growth in demand (λ), i.e., x(T+t) = λx(T+t-1), where t=1...∞. The problem 
horizon remains as desired, but with additional constraints for t>T. This kind of model is 
more suited and intuitive for problems that have infinite resources for investments, x<∞. 

4. Dual equilibrium: This method imposes an equilibrium condition on dual variables (μ) 
after the desired end period. It assumes that the dual variables of the T stage problem 
increase in proportion to the assumed discount factor (α), i.e., μ(T+t)= α μ(T+t-1), t=1... 
∞. If the Lagrangian function of the primal optimization problem can be conceived, then 
it can be observed that all the constraints after period T till ∞ can be added into a single 
term with a common multiplier μ(T). This kind of model is more appealing, since in 
reality prices usually rise (except under temporal uncertainty) over time at an inflation 
rate. The model is applicable to problems with limited resources for investments, x<xmax. 
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Table 2-9. Pros and cons of the various approaches to mitigate end effects 

Choices Pros Cons 

Truncation Simple, flexible Excessive computation 

Salvage value Light computation, relatively simple Does not capture operational values easily 

Primal equilibrium Suited when resources unrestricted Adds computation, convergence issues 

Dual equilibrium Light computation, practical appeal, 
relatively flexible 

Implementation requires some knowledge 
of optimization 

2.3.5.2 Screening methods and optimization interval  

Screening methods are generally employed to focus on particular aspects of a broader problem, 
or develop interesting scenarios for planning, or reduce computational requirements in 
identifying the most interesting solutions within a very large solution space (which may warrant 
further attention). Table 2-10 provides pros and cons of two typical methods that help screen the 
solution space for the most insightful ones.  

 
Table 2-10. Pros and cons of screening methods 

Choices Pros Cons 

Manipulate 
investment 

options/bounds 

Simple, develop generation scenarios, identify 
candidate transmission (copper sheet method) 

Risk of missing solutions or 
being not credible 

Model relaxed 
to LP 

Identify candidate locations, less computation May bind the relaxed variable 
closer to binary, low fidelity 

The problem of planning capital intensive infrastructures that operate for long term generally 
cannot be justified based on short-term benefits alone, but rather must also consider long-term 
impacts on economic competitiveness, environment, and resilience. Such studies are usually 
done for extended time horizons over which the effects of investment decisions are studied in 
order to relate their impact on the environmental changes (which usually take years to decades to 
manifest). This does not mean that decisions are to be made for that time frame, but rather, that 
decisions made for a shorter time frame are understood in the context of a long-range plan, and 
that impacts of those shorter-term decisions are well understood. Associated with the modeling 
of such long-term infrastructure planning problems, there are three kinds of 
simulation/optimization time intervals (going from shortest interval to longest): 

1. Optimization time step: This is the time interval at which operations within a sector are 
modeled, i.e., hourly (like a day-ahead market) or monthly or yearly time steps. Typically 
inter-temporal operational relationships are modeled to relate successive time steps.  
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2. Evaluation period: This is the time period over which the operations are optimized, and 
investment decisions are made. For a multi-commodity model (i.e., fuel, electricity…), 
within one evaluation period the operations for each sector may be modeled at different 
time steps, typically dictated by the degree of variability in respective commodity’s value. 
For instance, a coal network with reasonably stable prices may be optimized at yearly 
intervals, while natural gas and electric networks may require more granular time steps. 
A long-term optimization problem typically has multiple evaluation periods (usually 
yearly) over which network investments are optimized (also termed as multi-period 
optimization problem). 

3. Optimization period: This is the period over which an optimization program is executed 
to optimize the overall long-term infrastructure investments. Typically it involves 
multiple evaluation periods interconnected successively. If the optimization is done 
simultaneously for all the evaluation periods within the planning horizon, then we call it 
as single optimization period. If the planning horizon is broken into many intervals 
(cycles), each consisting of multiple interconnected evaluation periods, which are 
optimized in a rolling manner (i.e., sequentially feeding the results to another), then we 
call this multiple optimization periods. Usually this kind of model is constructed to 
accommodate dynamic changes in futures and parameter inputs between rolling periods. 

Figure 2-11 shows these three kinds of intervals using the arrows at the bottom, and three kinds 
of planning frameworks using the rectangular boxes. The arrow at the beginning of each 
evaluation period denotes the investment decisions. While each framework has a particular 
optimization time step at which operations are modeled, the differences are in evaluation and 
optimization periods. The framework 1 consists of single evaluation period within a single 
optimization period. Since the decision of how much and what to invest are made once for the 
entire horizon, and the solutions do not provide temporal information of when to invest, this 
framework is also known as static optimization. Framework 2 consists of multiple evaluation 
periods solved simultaneously within a single optimization period, whereby the temporal 
information of when to invest is also captured (denoted by solid lines between multiple 
evaluation periods). Framework 3 consists of multiple optimization periods solved sequentially 
(denoted by the dashed arrow feeding period t solution to period t+1), where within each 
optimization period there are multiple evaluation periods solved simultaneously (denoted by 
strong connections). Framework 3 is also known as dynamic/rolling planning, since it offers the 
possibility of updating the continuously evolving planning attributes such as infrastructure cost, 
and resource availability. 
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Figure 2-11. Optimization time intervals and planning frameworks 

Table 2-11 presents pros and cons of three planning frameworks based on 
optimization/evaluation period choices.  Table 2-12 also presents pros and cons, but for different 
choices of optimization time steps within the evaluation periods. In a certain sense, the choice of 
optimization time step may also act as a screening parameter, since it helps to condense the 
details involved in large long-term optimization problems and help find the relevant solutions at 
reasonable computation. 

   Table 2-11. Pros and cons of optimization/evaluation period choices 

Choices Pros Cons 

Single evaluation period/ 
single optimization period 

Very fast No temporal information 

Multiple evaluation periods/ 
single optimization period 

Achieves optimal solutions High computational burden; 
decisions use future information 

Multiple evaluation periods/ 
optimization periods 

Reasonable computational speed, 
realistic about future info 

Solutions are sub-optimal 

Investments 

Framework 3 

Framework 2 

Optimization period(s) 
/horizon 

Evaluation period 

Framework 1 

Optimization time 
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Table 2-12. Pros and cons of optimization time step choices 

Choices Pros Cons 

Chronologica
l hourly 

Model starts, load-wind correlation and 
variability, inter-temporal constraints, 

assess arbitrage value of storage 

Computation intensive for long-term 
problems 

Hourly 
samples 

Capture important hourly/seasonal 
information, reduces computation 

Possibility of missing critical information in 
the sampling process, and miss phenomenon 
such as energy arbitrage, ramping and so on 

Monthly/ 
yearly 

Suited for long-term, inter-regional 
integrated sectors planning 

Data aggregation (e.g., use LDC), small-
time scale phenomena not captured 

 

2.3.5.3 Handling uncertainties  

Power system operational and investment planning problems typically face many uncertainties 
related to system conditions and component outages. At the operational time frame, planning 
against uncertainty is done through generation scheduling and commitment processes that ensure 
enough supply/demand side reserves. A long-term planning problem must also account for such 
operational reserve allocations appropriately [26, 69,124].   

However apart from these, planning tools must also be able to handle longer term uncertainties 
related to future evolutions, which can be classified as local and global uncertainties. Local 
uncertainties can be parameterized by probability distributions or uncertainty sets around a point 
defined by a scenario. Examples of local uncertainties include shifts in load growth and 
investment costs or fluctuations of fuel prices. In contrast, global uncertainties are those that 
cause a significant impact on the evolution of the system. Examples of global uncertainties are 
the implementation of emissions policies, dramatic shifts in demand, or public rejection of a 
certain type of resource. A set of realizations on global uncertainties is appropriately thought of 
as a future scenario. In long-term planning, one generally creates a number of scenarios and then 
develops plans that are robust and perform acceptably in all scenarios. Table 2-13 provides pros 
and cons of certain choices and methods to handle uncertainties in long term planning. 
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Table 2-13. Pros and cons of choices to handle uncertainties 

Choices Pros Cons 

Deterministic Fast, simple Not robust 

Component outages Solutions more robust Computational 

Local uncertainties- 
Parametric uncertainty in 

conditions (e.g., demand, fuel 
prices, variable generation) 

Provides increased solution 
robustness 

More computational, ascertain 
probability distributions 

Global uncertainties- “Large” 
uncertainties (e.g., $4 N gas vs. 

$10 N gas, CO2 tax or not, 
0.5% vs. 3% demand growth) 

Provides increased solution 
robustness 

More computation, data gathering 
more complex 
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3 IMPLEMENTATION REQUIREMENTS FOR CO-OPTIMIZATION 
MODELING 

This section addresses several important practical issues associated with implementing co-
optimization models, including data needs over and above traditional planning studies (Section 
3.1), computational requirements (Section 3.2), the steps that are required to obtain the data and 
execute co-optimization models (Section 3.3), and finally time needed to develop and validate 
those models (Section 3.4). These sections draw on the authors’ experience, informal 
conversations with the user community, and the literature. 

3.1 Incremental Data and Their Benefits 

Data availability and quality play a key role for any model development efforts. While, generally 
speaking, the electricity sector has extensive amounts of data available, ranging from generation 
to transmission and to consumption, the data requirements for constructing co-optimization 
models of high fidelity still pose significant challenges. The goal of this section is to review data 
issues in detail. Section 3.1.1 identifies the data used in current transmission planning processes; 
while Section 3.1.2 identifies incremental data needs for running co-optimization models, and 
provides a detailed summary of all the data required, including the desired data resolution and 
possible data sources. 

3.1.1 Data for current long-term planning 

The Eastern Interconnection encompasses large geographical areas that have multiple entities 
responsible for long-term generation and transmission resources, including both regulated and 
deregulated utilities, and independent system operators. Different entities have different planning 
processes, and consequently, different data requirements. Generally speaking, there are three 
types of planning processes, as summarized in [113]: reactive planning (RP), proactive planning 
(PP), and co-optimization planning (CP). Co-optimization can benefit states and Planning 
Coordinators regardless of their market and regulatory structures, as we have emphasized in the 
introduction and conclusions to this report. 

Reactive planning refers to the practice of planning generation resources first, followed by 
transmission planning. Such a practice is common among regulated utilities, as described in 
[144] and through our discussion with several vertically integrated utilities in the Eastern 
Interconnection. In the reactive planning procedure, key data for transmission planning are the 
present transmission network topology and characteristics (e.g., transmission line voltage), 
forecasted peak load, and existing and planned generation resources. The last two pieces of 
information, load and generation, are usually passed along from the groups responsible for 
generation planning within the same utility company. The transmission planning in the reactive 
planning process is usually conducted through static analysis of load flow and power system 
feasibility, through the widely used commercial software, such as PSS®E from Siemens or other 
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comparable tools. The input data for such analysis usually consist of bus data (base voltage, 
types of the buses, etc.), transmission line data (“from” and “to” bus, resistance, reactance, etc.), 
real and reactive load at each bus (either under peak conditions, or for a range of hours), 
generators (bus locations, real and reactive power limits) and transformer data. 

The process of proactive planning, which has been used by several system operators/RTOs, 
usually requires running a production-costing model with detailed transmission network 
modeling, which would require more data than reactive planning. One widely used production-
cost model is PROMOD IV® from Ventyx, a subsidiary of the ABB Group [107]. Transmission 
network data in the format used by PSS®E can be directly imported to PROMOD IV®. 
However, production-cost models need more detailed data on the supply side, including power 
plants’ heat rate curves, fixed and variable O&M costs, availability, reserve capability, emissions 
rates, fuel costs, and, for some models, unit commitment constraints (minimum production levels, 
minimum-up/down time, ramp rates).  For planning models that account for transmission 
contingencies, some transmission infrastructure performance data are needed such as Mean Time 
Between Failures (MTBF) and Mean Time to Restore (MTTR). For transmission planning, 
potential corridors are often identified first before running the production cost model. The 
planning process may be iterated several times between identifying potential transmission 
expansion projects and conducting feasibility and economics analysis of the power generation 
system. 

The co-optimization planning problem attempts to find the least-cost combinations of candidate 
generating units and transmission lines for supplying the load forecast and satisfying prevailing 
operation and planning constraints.  (However, in a world with increased penetration of demand 
response, load forecasts may lose some of their usefulness, and the goal will shift to maximizing 
market efficiency, being the net economic benefits to all market participants [4].)  The objective 
comprises investment costs and salvage values for new resources, operation costs of generating 
units and microgrids, and the cost of unserved energy.  The co-optimization expansion planning 
objective is subject to prevailing operation constraints, such as the limits on generation, fuel, 
ramping, emission, etc., and transmission network constraints.4

A decomposition approach could be applied to coordinate the operation and planning constraints 
as part of the co-optimization scheme (see Section 3.2.2, below, for further details). The 
decomposition would separate the planning problem into a co-optimization of generation and 
transmission, a short-term operation subproblem (which checks the transmission network 
constraints in the proposed plan) and an economic operation subproblem (which finds the 

 

                                                 
4 A demonstration of a co-optimization process by the Australian Energy Market Operator using the commercial package 
PLEXOS can be found at http://www.aemo.com.au/Electricity/Planning/National-Transmission-Network-Development-
Plan/Assumptions-and-Inputs. 

  



 60 

optimal system operation based on the proposed plan). If the feasibility or the optimality check 
fails, constraints are generated by the corresponding subproblems and added to the next iteration 
of co-optimization of generation and transmission in order to try to move the investment problem 
towards feasibility. This iterative process will continue in an attempt to identify a secure and 
optimal expansion planning solution.  

3.1.2 Incremental data needs 

The data requirements for generation-transmission planning based on co-optimization would 
include all the data for the proactive planning process, plus the investment costs for new 
generation and transmission resources (and other resources such as demand response, distributed 
generation, and microgrids). For projects of a vertically integrated utility, such data shall be 
available within the utility. For other Planning Coordinators, such data are generally available 
from data vendors, such as Ventyx and Platts, as well as from certain specialized consulting 
firms. In summary, while in general all the data to conduct a co-planning process exist in the 
power sector, it may require tremendous effort to collect all the data from multiple sources. It 
may need additional effort to link data from different sources properly, such as linking existing 
and potential generation resources, forecasted demand, and demand-side resources down to the 
bus level in a transmission network. To help provide an overview of the data needed for 
generation-transmission co-optimization, a table (Table 3-1) that summarizes the categories of 
data needed and their potential sources is provided in Section 3.1.3.   

3.1.3 Benefits of incremental data 

As discussed before, more detailed, consistent, or higher quality of information are necessary for 
co-optimization modeling.  Collection of such information will incur additional costs and 
manpower that would have to be justified. Part of the justification could be the potential benefits 
of co-optimization, in terms of more efficient and effective transmission plans and generation 
mixes.  We described these benefits in our example applications in Section 4, below. 

However, the incremental data needed for co-optimization models would also benefit other 
planning analyses. Such information could potentially foster improved analyses in more focused 
studies to support resource planning and investment, including studies of demand response, 
energy storage, energy efficiency, distributed generation, variable-output resources, capacity 
additions, uprates and retirements, capacity degradation, and fuel prices. As an example, Table 3-
1 below shows how typical co-optimization planning data (discussed above and summarized in 
Table 3-3) can be utilized for sensitivity analyses in the production costing simulation of a power 
system with variable wind energy. 
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Table 3-1. Illustration of the use of co-optimization planning data for power system simulations  
Scenarios Wind 

Capacity  
(GW) 

Wind 
Energy  
(TWh) 

Wind Energy  
Contribution 
(%) 

Production 
Cost ($ 
Billion) 

Average 
Production 
Cost ($/MWh) 

No Wind 0 0 0 217.5 45.64 
Wind capacity factor CF 40% 230.5 845.2 17.67 130.4 27.25 

CF 30% 481.5 1,596 33.37 86.8 18.14 
All Wind 580 1,816 38 77 16.10 
Fuel Price 
Sensitivity 

20% Lower 230.5 
 

845.2 17.67 118.9 24.87 
10% Lower 845.2 17.67 124.7 26.06 
10% Higher 845.2 17.67 135.7 28.36 
20% Higher 845.2 17.67 141.7 29.63 

Wind Gen. 
Sensitivity 

20% Lower 676.1 14.14 143.7 30.03 
10% Lower 760.6 15.9 136.8 28.59 
10% Higher 929.7 19.44 130.4 25.99 
20% Higher 1014 21.20 124.3 24.80 

Load Sensitivity 20% Lower 845.2 22.07 64 16.73 
10% Lower 845.2 19.62 91.6 21.27 
10% Higher 845.2 16.29 178.5 34.65 
20% Higher 845.2 15.12 245.9 44.54 

Carbon Cost 
Sensitivity 

Low Carbon Cost with 
40% Wind 

230.5 845.2 17.67 406.8 84.97 

High Carbon Cost 
with 40% Wind 

230.5 845.2 17.67 638 133.3 

Low Carbon Cost with 
30% Wind 

481.5 1,596 17.67 285.7 69.68 

High Carbon Cost 
with 30% Wind 

481.5 1,596 17.67 448 93.59 

Load 
Management 

No Wind Energy with 
Load Shedding 

0 0 0 208.7 44 

Min 40% CF Wind 
with Load Shedding 

230.5 845.2 17.81 123 25.9 

Min 30% CF Wind 
with Load Shedding 

481.5 1,596 33.53 80.6 16.97 

 

3.2 Computational Requirements 

This section will discuss the computational requirements for using co-optimization models. 
Generally speaking, such co-optimization models belong to the classes of Linear Programming 
(LP), Nonlinear Programming (NLP), Mixed Integer Linear Programming (MILP), or Mixed 
Integer Nonlinear Programming (MINLP), with LP having the least computational demands 
while MINLP has the most. 

Large-scale LP models in general can be well handled by the state-of-the-art commercial 
optimization software packages, including CPLEX (IBM), Xpress-Optimizer (FICO) and Gurobi 
Optimizer. However, NLP and/or MIP co-optimization models can include more realistic 
modeling options.  But they are much more difficult to solve because of the great variety and 

≥
≥
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amount of variables and constraints. This section differs from other sections of this report 
(especially the co-optimization literature survey of Section 2.3) in that it describes other 
advanced methods not yet used in practice that have the potential to expedite and improve the 
efficiency of whatever modeling approaches are deemed to be the most worthwhile. In the 
following, first we will discuss the difficulties facing users of complicated co-optimization 
models, and review the status quo on computing approaches.  Then we will briefly discuss some 
methods for the nonlinear programs and models involving both expansion planning and market 
equilibrium problems. After that, we will focus on decomposition algorithms that divide large 
planning problems into more manageable pieces, and high-performance and parallel computing. 

3.2.1 Difficulties, challenges and opportunities on computing requirements for co-
optimization models 

Co-optimization models include both transmission expansion planning and generation planning 
for multiple years/decades and multiple locations/regions. This leads to many computational 
difficulties due to the fact that the details of power systems can greatly increase the size of the 
problem. In addition, nonlinearity and integer variables and uncertainties can add additional 
layers of complications. As is discussed in Section 3.2, modeling of transmission flows by itself 
can be a very difficult non-linear program (e.g., ACOPF).  After adding investment expansion 
decisions, the problem becomes an even harder mixed-integer nonlinear program. However, the 
linearized DC approximation to load flows is a practical and generally sufficiently accurate 
approach for simplifying the nonlinear AC problem while still maintaining model fidelity.  In 
many studies, DC OPF is used to model power transmission, and is adequate except under 
relatively rare highly stressed conditions in which voltage constraints are in risk of violation. In 
addition to non-linearities, there are difficulties related to integer variables, dynamics, 
uncertainties, and the sheer size of the optimization problems.  

In order to understand what the greatest cause of difficulty for particular co-optimization 
problems might be, we first discuss the types of models used in co-optimization of transmission 
and generation. The primary types are listed as follows, 

• Linear models, nonlinear models, mixed integer models, and models with equilibrium 
constraints 

• Dynamic models vs. static models 

• Stochastic models vs. deterministic models 

• Large-scale models when considering a big system including both transmission and 
generation expansions 

Linear models are the easiest type to handle, because there exist very powerful and efficient 
commercial software packages, as mentioned. However, when the size of the problem becomes 
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very large (potentially tens of millions of variables because of the large number of buses, load 
scenarios, plants, etc.), solving the problem could be very challenging even with the most 
advanced computers and software packages (e.g., several days in [115]). This is usually due to 
the limited memory space in the computers relative to the number of variables and constraints in 
the problem. In the following, we will discuss current approaches in this respect. Because the 
current techniques for mixed integer programs are mainly based on their linear relaxation (i.e., 
where the integer or binary variables are allowed to take on fractional values), software packages 
for linear programming are also those popular for solving mixed integer programs. In order to 
model the dynamics of changing environments (especially over multiple years), dynamic models 
are sometimes used. This is usually dealt with by adding more time stages (discrete dynamics). 
In reality, there exist many uncertainties related to future parameters such as costs, demands, 
capacities, etc. (see Section 6, below).  However, there are methods for explicitly introducing 
uncertainties in the models such as stochastic or robust models, but these become yet more 
difficult to solve due to the size increase and additional constraints.  

Therefore, all types of problems will become more difficult to deal with when the scale increases 
and dynamics and uncertainties are introduced. A universally adopted approach to deal with 
problems caused by the scale of the optimization is to simplify these assumptions and solve a 
comparatively easier problem, even though model fidelity and precision may be compromised. 
Simplification approaches include: 

• Aggregation of input data and model variables (e.g., [115]) 

• Simplification of dynamics and uncertainties (e.g., [115]) 

Approaches to modeling aggregation include: 

• Location aggregation (e.g., aggregated region(s) instead of exact locations) (e.g., [106]) 

• Time period aggregation (e.g., multiple year instead of daily data) (e.g., [122]) 

Examples of model simplifications include: 

• Operational details simplification (e.g., unit commitment might not be modeled in 
expansion planning) 

• One-time expansion planning (e.g., avoiding the dynamic of the market or policy changes 
over years) 

• Deterministic input data (e.g., using the expected wind output or peak loads) 

Model aggregations and simplifications are effective for reducing computational complexity. 
However, models then lose fidelity and accuracy to some extent. Thus, it is desirable to solve 
large-scale and complicated problems. In the next subsection, we will discuss details on how 
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decomposition methods can be used to deal with large-scale/dynamic/stochastic co-optimization 
models in the next section.  

Meanwhile, nonlinearities present many challenges even with advanced software packages. A 
handful of nonlinear solvers can be used through widely available packages for setting up 
optimization problems (such as GAMS, Matlab, and AIMMS); example nonlinear solvers 
include CONOPT, Barron, and PATH.  

An alternative way to deal with nonlinearities is through piecewise linear approximations (e.g., 
[151]).  This is easiest to implement when the nonlinear terms in the functions involve single 
variables and, in the case of cost, the nonlinearities are upward bending (“strictly convex”, which 
means the second derivative is positive).  Then linear or mixed integer solvers can be utilized. In 
[151], the nonlinear function is convex and in the objective function, and then no integer variable 
is required. In cases of non-convex nonlinear functions (such as costs that bend downwards), 
binary variables are required to be added to the linear approximation model. Although the 
nonlinearity is eliminated, the newly-introduced integer variables still keep the problem from 
being solved easily. Furthermore, the more precision that is needed, the more integer variables 
need to be added and more difficult it is to solve. However, this might still useful because of the 
advance of mixed integer programming theory and software packages. Nonlinearities arising 
from games between two independent entities, one of which is optimizing considering the 
reaction of the other usually is addressed by using iterative methods. Iterative methods generally 
solve a simple problem at each time (e.g., the transmission planning, generation expansion, or a 
market equilibrium). For co-optimization models involving games (e.g., the market or general 
economy), iterative methods are used in a way where each player’s optimization is solved 
iteratively with information of the optimal dual and primal solutions of other players and leaders’ 
decisions. Iterative methods are usually easy to use and implement. However, for some problems 
it might be difficult to prove finite convergence in theory. In practice, computational results are 
often but not necessarily good.  For this reason, approaches that directly solve the problem in one 
shot without iteration are increasingly popular [36] using, for instance, PATH. 

3.2.2 Decomposition approaches for co-optimization models 

In co-optimization models, both expansion and operation of transmission and generation assets 
must be considered. When solving these complicated models, some approaches break down the 
whole model into two parts: a transmission part and a generation part. For each part to be solved, 
the information of the other part (primal and/or dual solutions) is assumed to be known. The two 
parts are solved iteratively until no or negligible further improvement can be achieved by 
changing the solutions.  (An example is provided in Section 4.3.4.) This method is easy to 
implement but may only find a suboptimal solution due to the presence of integer variables or 
complicated constraints. To further address the limitations of current commercial optimization 
solvers, we will discuss decomposition algorithms that hold great potential to efficiently solve 
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large-scale co-optimization models. Some decomposition algorithms for co-optimization models 
are listed as follows, 

• Benders Decomposition: a useful tool to help with large number of scenarios 

• Column Generation: a useful tool for extracting good information from subproblems 

• Branch-and-Price: a promising tool to solve multi-stage stochastic mixed integer 
programs 

The state of the art optimization solvers (MILP or LP) can solve problems with reasonable sizes 
(e.g., a RTO deterministic expansion problem) within an acceptable amount of time. However, as 
the scale or size increases, the computational times increase exponentially or the problems are 
just too large-scale to be loaded into computers due to their limited memory space. Hence it is 
necessary to break down the largest scale problems into smaller problems that can be solved 
efficiently by the current solvers. Decomposition methods divide the original problem into 
smaller-size problems and assemble the information of the smaller problems in a way in which 
improvement at each step and convergence are guaranteed. 

3.2.2.1 Benders Decomposition-type Decomposition 

For stochastic programming expansion planning problems, dispatch costs for many individual 
hours or scenarios need to be simulated and incorporated in the model, which makes such models 
very large. To address the issue of model expansion resulting from by scenarios, Benders 
decomposition (BD) [11] is attractive due to its properties. A complete description of Benders 
decomposition can be found in Appendix A.III.1.  Intuitively, Benders decomposition when 
applied to capacity expansion problems divides the problem into an investment/expansion 
problem (choose MW capacities of new plants or lines, for instance) and a set of operations 
problems.  The expansion problem proposes trial system designs, and the operations problems 
then calculate the operating cost and shadow prices (in terms of operating cost savings) of 
additional capacity.  The expansion problem is then re-solved, using (very loosely speaking) the 
shadow prices as guides to identifying a new solution.  That is, the solution of the operation 
problem returns to the expansion problem information about what additional investments might 
be beneficial and which of the proposed investments haven’t panned out. Through repeated 
iterations, the expansion problem makes better guesses, and under certain conditions, the process 
is guaranteed to converge to the overall cost-minimizing design.   

As an example, two-stage expansion planning problems usually have the following structure as 
shown in Figure 3-1, 
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Figure 3-1. Structure of the two-stage expansion planning problems 

Benders decomposition perfectly aligns with this structure. When the expansion decision is 
known, we can solve each operations problem separately, which is readily done because each is 
small. When applied to this structure, Benders decomposition is also referred to as the L-Shaped 
method [136]. This structure (Figure 3-1) is also a good fit for using parallel or distributed 
computing resources, which will be discussed in the high performance computing section. 
Although convergence of Benders decomposition is guaranteed in theory if the original problem 
has certain convexity properties, the main drawback of using Benders decomposition is that after 
rapid initial progress, the algorithm’s convergence tends to slow. To this respect, numerous 
acceleration methods have been proposed to speed up the convergence rate. A short survey can 
be found in [151]. 

The basic Benders decomposition method assumes linear constraints and continuous variables. 
However, co-optimization models sometimes violate these assumptions. Then variations of 
Benders decomposition have been developed and used. When the operating subproblem includes 
nonlinear constraints but still has a convex feasible region, generalized Benders decomposition 
[39] can be used instead (e.g., the generation expansion planning problem in [16]). (In a convex 
feasible region, all solutions on a line connecting two feasible solutions will also be feasible.) 
When the subproblem includes integer variables, the problem becomes much harder and Benders 
decomposition cannot guarantee convergence to an optimal solution. This is because the value 
function of the subproblem is neither convex nor continuous as in [14]. In this situation, the 
integer-L-shaped method in [75] can be used if the master problem has only binary decisions. In 
addition, particular improvements to the methods, such as disjunctive cuts and combinatorial 
Benders cuts, can also be valid methods in this situation. Meanwhile, for other non-convex cases, 
research is actively underway to develop efficient and effective algorithms based on the Benders 
Decomposition framework. 
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Another commonly used Benders framework is often applied for hydro-thermal power 
scheduling under uncertainty.  In particular, for a multistage stochastic pure linear program, 
Benders decomposition can be nested through all stages while blended with simulation 
techniques. This method is also called Stochastic Dual Dynamic Programming (SDDP) [101]. 
This method is mainly composed of two major operations: forward simulation and backward 
addition of cuts. Simulations and cut additions can be implemented more efficiently in the high 
performance computing environment. 

3.2.2.2 Column generation-related decomposition 

Since column generation (CG) was introduced [22], it has been elaborated and adapted to solve a 
great variety of problems including large-scale linear programs, mixed integer programs, and 
stochastic programs. In this section, we will focus on how CG is used to solve MILP and multi-
period stochastic programs that arise in the area of power system planning. A mathematical 
statement of the basic CG algorithm can be found in Appendix AIII.2.  Intuitively, a “column” is 
one particular solution or set of values for the decision variables (such as 1000 MW of wind plus 
500 MW of combustion turbines).  In CG methods, very loosely speaking, candidate solutions 
are generated in sequence by considering, for instance, possible combinations of previously 
generated solutions.   

Although originally developed for large-scale linear programs, CG algorithms have evolved to 
solve integer (mixed integer) programs and multistage stochastic mixed integer programs.  Their 
applications include multi-commodity flow problems in [8] (which can be relevant to combined 
natural gas-electricity operations), airline crew scheduling in [137] and energy/power systems 
planning in [117] and [125]. Because most current solution methods for integer and mixed 
integer programming are based on linear programming, the convex hull5

However, the generation and inclusion of columns needs to be in accordance with branching 
rules/strategies used by the CG algorithm. This approach is usually referred to branch-and-price. 
This method is also a good fit for multistage stochastic expansion planning problem (e.g., 
[1,82,117,125]). In these approaches, the approach breaks up the large stochastic problem by 
solving a series of individual (and smaller) deterministic capacity expansion problems.  This is 
done by relaxing the so-called nonanticipativity constraints, which couple the decision variables 
of different scenarios in the scenario tree, and force expansion decisions in any two scenarios to 
be identical through year y if the history (load growth, etc.) of the two scenarios are identical 

 formulation implicit in 
CG methods can be more efficient since its linear relaxation is a better approximation of the 
convex hull of the original problem. As a result, CG is very useful when the number of feasible 
discrete decisions is far larger than the number of discrete decision variables. 

                                                 
5 A convex hull is a geometric concept, defined as the smallest convex region to contain a certain region (or to 
contain a finite number of points.   
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through that year.  (That is, if scenarios A and B both have 2% load growth through 2025, then a 
planner cannot tell until after 2025 which scenario is occurring and so must make the same 
decisions through 2025 in both scenarios.)   

This strategy is powerful when there are many integer or binary variables and many scenarios, 
which is often the case in power system expansion planning.  Not only do plant expansion and 
line additions involve integer/binary decisions, but so do operations (i.e., unit commitment). In 
the expansion planning level, uncertainties come from input prices, load growth, new technology 
availability, and policy changes [57]. Furthermore, due to the rapid increase in renewable energy 
production, uncertainty has grown in the operational problems.  Consequently, compared to the 
deterministic problem in Figure 3-1, Figure 3-2 presents a more nuanced problem structure that 
includes uncertain scenarios. 

 

Figure 3-2. Expansion planning problem structure considering uncertainties in both levels [149] 

To solve a complicated problem as shown above, an approach referred to as “nested column 
generation” can be used. Upon the decomposition of the stochastic strategic planning problem, 
another layer of decomposition needs to be performed on the operational problems. This is 
because the operational problems are still large-scale stochastic programming problems. Since 
both levels may include integer/binary variables, branch-and-price is a promising approach. In 
addition, more advanced formulations and methods based upon an approach called “disjunctive 
programming” are also the subject of active research. 

3.2.2.3 High performance computing 

High performance computing (HPC) usually refers to the use of supercomputers or clusters to 
solve complex computational problems. The computational tasks are usually achieved by the 
collaboration among many computers. For example, there is a central computing station that 
coordinates this collaborative work, and sends smaller tasks to the distributed computing 
resources, and then collects the resulting information, as shown in Figure 3-3. This structure 
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nicely complements the application of decomposition algorithms. The central station is in charge 
of solving the master problem (such as the design problem in Benders decomposition) and sends 
either investment decisions (Benders) or prices (CG) to the subproblems that are individually 
solved on the distributed computers. In current practice (without HPC), the same computer needs 
to solve the subproblems in series, one by one. This consumes a lot of time since there might be 
many scenarios or subproblems. In many cases, this may be the main hurdle for solving the 
problem efficiently. While using the HPC environment, all the subproblems can be solved in 
parallel and the total computational time (on subproblems) can be reduced by as much as 𝑛𝑛 times 
(where 𝑛𝑛  is the number of subproblems or scenarios). 

 

Figure 3-3. Distributed computing structure for decomposition algorithm 

To further take advantage of distributed computing resources, a hierarchical structure can be 
constructed to facilitate algorithms based on nested decomposition. For example, the central 
station can be connected directly with sub-computing stations which, in turn, connect their own 
distributed computing resources. This is a good fit for decomposition algorithms that need to 
further decompose the subproblems. In addition, several levels of stations can be designed to 
accommodate more-complicated algorithms. To our best knowledge, high performance 
computing has not been widely used for accommodating decomposition algorithms in electric 
power planning practice. But much research is underway on the subject, which we believe will 
likely pay off in practical approaches for decomposition and solving very large co-optimization 
problems. 
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3.3 Steps Needed to Acquire Data and Execute Co-Optimization Models 

This section has been developed through conversations with industrial generation and 
transmission planners. We describe how utilities and Planning Coordinators can develop and 
maintain databases necessary for using software that co-optimizes generation and transmission 
expansion (Section 3.3.1).  These conversations also provided an opportunity to explore planners’ 
view on the concepts, scope and requirements of co-optimization tools, and the general pros and 
cons of co-optimization, which we report in Section 3.3.2. 

3.3.1 Data and information for co-optimization 

Table 3-2 gives a synopsis of the kind of data required to run a co-optimization model, and 
summarizes some specific remarks that the experts we consulted made about them. This is 
provided for a quick perusal.  Meanwhile, Table 3-3 is an expanded version of Table 3-2 and 
presents in detail data requirements and corresponding sources for obtaining these data. 

 
Table 3-2. Synopsis of data and information needed to run co-optimization models 

Categories Required data Specific remarks 

Historical 
conditions 

Hourly load & variable generation data, fuel prices, 
hydro conditions, bilateral transactions, generation 
forced & scheduled outage rates, transmission 
maintenance histories, inflation and discount rates, 
reserves for system adequacy, contingencies & 
flexibility, and imports & exports 

Data for previous N years, load 
and variable generation data 
should be correlated with 
weather conditions or be 
weather normalized 

Existing and 
planned 
infrastructur
e 

AC network topology, AC circuit data, DC line data, 
fossil & renewable generation data, storage and 
demand response, and existing long-term bilateral 
contracts, contingencies (N-1 & N-1-1) 

Operational characteristics, 
impacts of line length on its 
capacity if using DC model 

Resource 
options 

Generation, storage, demand response, and their 
maturation rate 

Investment and operational 
characteristics of each option, 
geographical dependence of 
data 

Transmissio
n options 

AC line, DC line, transformer, circuit breaker and 
voltage control equipment 

Investment and operational 
characteristics of each option, 
candidate transmission 
investments 

Future 
conditions 

Forecasted system conditions, bilateral contracts, 
global scenario descriptions (policy, technology or 
load related) 

Depends on planning horizon 
(with suitable end effects 
calculation), employ technique 
to choose a good set of global 
uncertainties 
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Table 3-3. Details of data and information to run co-optimization model 
Data or information item How to obtain (source and comments for data 

collection) Essential Useful 
A. Historical conditions 
Hourly load data for a previous year 
that is “normal” (has no strange 
events). Data for variable generation 
(VG) should “synch” with load data, 
i.e., they should be for same time 
period. 

Hourly load data for previous 
N years; hourly weather data 
for previous N years, 

Source: PI-Historian from EMS, Ventyx hourly data 
Comments: The load and VG data should be 
correlated with the weather patterns and thus, with 
each other. One way to do this is to use hourly load 
and VG data for a previous “normal” (has no strange 
events) year. But we also need to capture the 
systemic changes in load shape. Therefore, it may be 
necessary to develop a model for predicting 
synchronized load and VG data. 

Fuel prices (coal, petroleum, natural 
gas, uranium) for previous year 

Fuel prices (coal, petroleum, 
natural gas, uranium) for 
previous N years 

Source: Energy Information Admin., Henry Hub, 
Market service providers 

Hourly variable generation (use 
capacity factors only if hourly is 
unavailable) for previous year 

Hourly variable gen (use 
capacity factors only if hourly 
is unavailable) for previous N 
years, and then weather 
normalize them, e.g., average 
them. Alternately, use N actual 
years as different “scenarios.” 

Source: Pi-Historian from EMS, NREL (EWITS, 
WWSIS) 
Comments: Load and wind data should be correlated 
with weather patterns and so with each other. One 
way to do this is to use hourly load and wind data for 
a previous “normal” (has no strange events) year. But 
we also need to capture the systemic changes in load 
shape. Therefore, it may be necessary to develop a 
model for predicting synchronized load and wind 
data. 

Hydro conditions for previous year Hydro conditions for previous 
N years, and then weather- 
normalize e.g., average them.  

Source: National Oceanic &Atmospheric Admin/ 
Comments: Alternately, use N actual years as 
different “scenarios.” 

Bilateral transactions for previous 
year, unless all dispatch is to be 
represented according to economics. 
Hurdle rates (wheeling charges) 
should be represented between 
regions. 

Bilateral transactions for 
previous N years 

Source: OASIS 
databases                                                     Comment
s: Previous year bilateral transactions may be 
represented if they are thought to be representative of 
what will occur in the future. 

Generation forced & scheduled outage 
rates (can be computed from gen 
forced and maintenance outage 
histories) 

Gen hourly unit commitment 
for previous N years 

Source: PI-Historian from EMS, GADS (NERC) 
Comments: Capture relationships between the 
seasons and maintenance scheduling in the co-
optimization 

Transmission maintenance histories 
for previous 5 years 

Transmission cct forced 
outage histories for previous 5 
years 

Source: PI-Historian from EMS, 
TADS                             Comments: Transmission 
maintenance is generally off-peak and should be 
represented during that time. Forced outages can 
happen anytime but typical transmission FOR is 1% 
and so not very critical 

Inflation and discount rates for 
previous year 

Inflation and discount rates for 
previous N years 

Source: U.S. White House Office of Management 
and Budget (OMB) 
Comments: ; Tag inflation to GDP.                                      
May have different rates for different organization 
types (e.g., IOUs vs. Public Powers) and for different 
regions 
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Table 3-3. Details of data and information to run co-optimization model (Cont.) 
Data or information item How to obtain (source and comments for data 

collection) Essential Useful 
A. Historical conditions (Cont.)   
Reserves to meet peak load and LOLE   Source: NERC, state PUCs, resource adequacy 

targets in Capacity 
markets.                                                                   
  Comments: May vary by region or by state. 
Present variation is from 14.2% (MISO) to 18% 
(PJM) 

Contingency reserve requirements for previous year, 
including which units contribute to those 
requirements and which do not. 

Contingency records 
(N-1 & N-1-1) 

Source: PI-Historian from EMS 

Flexibility needs (regulation and ramping 
requirements for previous year) 

  Source: Estimate based on intra-hour load and 
VG variability, such that CPS-2 is met 

Imports and exports for previous year, and whether it 
can be applied towards resource adequacy needs. 

  Source: PI-Historian from EMS 

B. Existing infrastructure and planned infrastructure & conditions 
AC network data: topology, nominal kV at each bus. Contingencies (N-1 & 

N-1-1) for gen. & 
transmission 

Source: Production cost model 

AC circuit data: kV level, impedance, continuous & 
emergency thermal ratings, rating adjustment for 
distance (St. Clair curves, i.e., loading limit given in 
multiples of SIL vs. distance), lifetimes (economic 
and operational), depreciation rate. 

Xfmr taps, ranges of 
voltage cntrl equip, 
Var compensation 
(against voltage 
stability issues) 

Source: Production cost 
model                                             Comments: 
Lifetimes: Two types, economic and operational. 
Typically, they are 30 yrs and 70 rs for 
transmission. After 30 yrs of economic life, a 
depreciation rate for economic value is applied.                                                                                 
AC vs. DC model: Need to capture the impact of 
line length on rating (voltage stability issues limit 
loading capability well before thermal rating). AC 
model can capture, but DC model requires explicit 
modeling for longer lines. 

DC line data: type, bus terminations, ramp rates, 
continuous & emergency ratings, lifetimes 

DC line reactive 
capabilities, whether 
it is voltage source 
converter or current 
commutated 

Source: Production cost model 

Fossil generation  data: technology, Pmax & Pmin, block 
representation of heat rates, cycling costs, fuel types 
which can be used, emission rates, O&M costs, ramp 
rates, unit lifetimes (economic and operational), 
emission control support (different for different 
regions). Tax depreciation profile. 

Qmax, Qmin, hot, warm 
& cold start-up costs 
& times, min. up & 
down times, hot & 
warm reserve costs, 
heat rate degradation 
as a function of use 

Source: Production cost model, Ventyx data 
(captures geographic variation of these data, 
which is very important ) 

Renewable generation data: technology, Pmax & Pmin, 
emission rates, fixed O&M costs, ramp rates, unit 
lifetimes (operational and economic), operation 
histories, Tax depreciation profile. 

  Source: National Renewable Energy Laboratory 

Storage data: technology, reservoir capacity, lifetime, 
grid services. For both charging and discharging: 
power limits, efficiencies, emission rates, fixed and 
variable O&M costs, ramp rates. Tax depreciation 

Start time & costs, 
heat rate degradation 
as a function of use 
(CAES) 

Source: Production cost model, EPRI Handbook, 
Manufacturer data sheets (batteries) 
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profile. 

Table 3-3. Details of data and information to run co-optimization model (Cont.) 
Data or information item How to obtain (source and comments for data 

collection) Essential Useful 
B. Existing infrastructure and planned infrastructure & conditions (Cont.) 
Demand response data: technology, Pmax, Pmin, ramp 
rates, fixed & variable O&M cost 

  Source: Production cost model, reports from load 
serving entities 

Existing long-term bilateral contracts   Source: FERC 
C. Resource options 
Generation, storage, and demand response data: 
same as for existing infrastructure, plus overnight 
cost per kW and lead time. 

  Source: Energy Information Admin., generator 
manufacturers, power plant design & construction 
consultants. 
Comment: Some data (overnight and variable O&M 
costs) depend on geographical location, and so 
regional multipliers may be necessary 

Maturation rate for each technology   Source: Same as previous 
D. Transmission options 
AC line data: kV level, impedance per mile, 
continuous & emergency thermal ratings, rating 
adjustments for distance (St. Clair curves, i.e., 
loading limit given in multiples of SIL vs. distance), 
distance between substations, overnight cost per 
mile, lifetimes and lead time. 

Candidate 
transmission 
investments 

Source: Conductor manufacturers, transmission 
design & construction consultants.                                          
Comments: Line and substation cost/mile depends 
on KV level. Also, overnight costs may depend on 
geographical location, and so regional multipliers 
may be necessary. 

Transformer data: kV levels, impedance, cont & 
emerg thermal rating, cost, lifetime and lead time 

  Source: Transformer manufacturers, substation 
design & construction consultants.                                           
Comment: This data may be combined with CB and 
voltage control equipment data for a given substation 
design to form a single “substation cost” 

Circuit breaker (CB) data: kV level, cost, lifetime   Source: CB manufacturers, substation design & 
construction consultants. 

Voltage control equipment: kV level, cost, lifetime   Source: Manufacturers, substation design & 
construction consultants. 

DC line data: type (VSC vs. .CC), kV level, 
continuous & emergency rating, ramp rates, 
overnight cost/mile, terminal costs, lifetimes, lead 
time 

DC line reactive 
capabilities 

Source: DC line equipment manufacturers, DC 
transmission design & construction consultants. 

E. Future conditions (20 yrs) 
Forecasted conditions: hourly demand, fuel prices 
(coal, natural gas, uranium), possible variable 
generation locations & associated resource 
(wind/solar) quality 

Planning 
horizon 
(forecasts 
needed for later 
years beyond 
horizon to adjust 
for “end 
effects”)  

Source: Market service providers, or compute using 
a forecasting algorithm.                                                 
Comment: Hourly demand for future years may be 
obtained via scaling of a previous year’s hourly 
demand profile. Alternately, a prediction model of 
synchronized wind and load data based on historical 
weather conditions should be developed for use in 
such planning studies 

Bilateral contracts   Source: Use existing long-term bilateral contracts, 
and forecast future bilateral contracts  using out-of-
area price disparity 

Scenario description: realizations (high/low) of 
global uncertainties such as cost of CO2 emissions & 
cost, nuclear waste, fuel prices, demand growth, cost 
of each generation & transmission technology, 
inflation & discount rates 

  Source: Consider all combinations of global 
uncertainty realizations; reduce this number by 
choosing a representative subset of them. 
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3.3.2 Industry perspective on the scope of co-optimization and tools 

This section reports perspectives that have been communicated to us from various leading 
practitioners of long-term generation and transmission planning regarding co-optimization. Their 
remarks are categorized into pros and cons of co-optimization.  The “pro” comments also include 
several suggestions for what should—or should not—be included in co-optimization models.  
We report many of the observations as we recorded them, and do not try resolve the many 
disagreements and contradictions among the opinions expressed. 

3.3.2.1 Pros of co-optimization and general advice 

1. Geographic cost variation: Co-optimization is very useful given that the economies of 
generation options are highly varying across geographies.  Therefore it will be 
economically beneficial to strategically expand generation and transmission 
simultaneously. 

2. Need for a robust tool: Currently no tool is available that can co-optimize generation and 
transmission across multiple states (the previous point necessitates assessment over a 
wider-region), and simultaneously handle the decision complexities involved in such a 
problem.  These complexities include: 

a. Transmission candidates: Many alternatives for transmission available (e.g., the 
MISO system has 60,000 nodes, and many candidate transmission lines to connect 
them), and there is a need to limit the alternatives. 

b. Voltage ratings introduce discrete decision variables: It is necessary to capture 
differences in characteristics of transmission lines at different voltage ratings, such as 
different costs of substation for 345 KV and 765 KV systems, respectively. Use of 
conventional continuous cost parameters expressed in $/GW-mile for transmission, 
analogous to the $/GW used in generation expansion, may not work.  

c. Value of transmission expansion: A generation and transmission co-optimization tool 
should be able to assess all the values transmission would bring to the system 
[103,18], apart from just production cost savings and emissions reduction related 
metrics, including: 

i. Value of transmission in reducing system congestion and losses; 

ii. Identification and quantification of parts of the network which incur savings and 
parts of the network which incur costs associated with each investment; 

iii. Accounting for system adequacy, and ancillary service/ramping service provision; 
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iv. “Insurance value” of adding transmission – i.e., adding transmission tends to 
mitigate the impact of multi-element contingencies, e.g., N-3, N-4, … etc..  An 
example is the economic value provided to southern California by the new 
Sunrise line, which was put in service in the summer of 2012 just after the San 
Onofre Nuclear Plant outage.  

3. Screening/evaluation tool: The simultaneous optimization of generation resources and 
transmission will provide valuable insights into economically beneficial expansion plans, 
thereby serving as a good screening tool. The tool may also be used to evaluate and 
compare different solution strategies, i.e., proposed generation siting and transmission 
designs. 

4. Evaluating market constructs/design: A co-optimization tool can be thought of as a 
pursuit to regulate the planning process towards an integrated resource planning 
paradigm, a move away from current deregulated market environment. The tool may 
provide signals to evaluate and perhaps improve the directions of current market 
constructs.  

• Software underlying capacity markets: The current market constructs may incent the 
adoption of certain solution strategies based on short-term economic signals (e.g., 
strategies for 1-5 year time horizon in terms of building local generation and demand 
response). However a long-term co-optimization model such as this can provide 
alternative options with a promise over longer horizons. Therefore, a co-optimization 
model considering generation, transmission and demand side options simultaneously 
over a longer time horizon may ideally underlie capacity market designs. 

5. Uncertainty and scenarios: If a co-optimization tool is to be built, the following features 
(equally applicable to any planning tool) would be of interest to the industry planners: 

a. Handling uncertainty is important – e.g., uncertainty in natural gas and coal prices, 
load levels, and demand response.  

b. Many companies emphasize scenario analysis – the ability to gain insight of how a 
design performs under significantly different futures or scenarios is really important. 

3.3.2.2 Cons of co-optimization 

1. Local DR program: Local DR programs may obviate the need for additional generation 
and corresponding transmission. This may lessen the value of co-optimization, unless DR 
programs are considered to be an investment option in co-optimization.  

2. Transmission planning practices: Transmission “only” companies deal just with 
transmission planning for their customers and others who own the generation. The 
generation owners make decisions about where and what kind of generation will be built. 
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Transmission companies design the transmission system to enable the generation and 
load choices of others. For such organizations, co-optimization may not be as useful as it 
would be for organizations owning both generation and transmission; yet, it may still be 
useful for determining future scenarios to study. This issue could be mitigated by 
developing the co-optimization tool in such a way so that the user would have the option 
of specifying or guiding the generation investments. The user would need to apply their 
own method for specifying or guiding generation investments, and it may be that such 
methods would differ depending on whether the service area of interest is within a 
traditionally regulated state or within a region served by an electricity market. 

3. Accounting for all design influences: While co-optimization tools may propose possible 
transmission designs, its ability to find solutions that will actually get built is limited by 
influences in resource and transmission planning for which it would not account. Some of 
these influences include:  

a. Influences in resource expansion: Environment (air and water preservation), tax 
subsidies, policies, job perspectives, fuel access, and regional priorities/policies. 

b. Influences in transmission expansion: system dynamics, reconfiguration, switching, 
rights of way, and voltage support assessments. 

4. Data maintenance: A data-intensive model requires significant labor to maintain. The 
value of the tool will need to be significant to justify such effort. 

3.4 Time Requirements for Model Development and Validation 

Developing any co-optimization model for practical application would likely be a long, arduous 
process. It is also a continuous process that would need to reflect updates on data and 
advancements in modeling and computation methods. Since most experience with co-
optimization is in the research community, and because the process of developing commercial-
grade software suite and research-grade models can be drastically different, it is difficult to 
provide an estimate for the time required for co-optimization model development in practice. 
That said, there are common steps required to develop any large-scale optimization model, 
whether research or commercial.  We provide a time estimate for each step based on the 
experience of the team members, who have successfully developed co-optimization models as 
surveyed in Section 2.3.2.3 and Appendix II.  The steps include: 

• initial planning; 
• data collection, processing and database construction; 
• model construction; 
• coding/debugging; 
• testing; and 
• validation. 
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The time estimates reported below assume that one person with appropriate technical 
background and experience is working on each task. 

Initial planning: While the initial planning for developing a model may involve many subtasks, 
such as resource assessment and data collection, a central task will be to define the project scope. 
Several factors can affect decisions on scope. First, the scope is driven by the purpose of the 
modeling effort.  For instance: 

• Is the model to be used by policy makers for analyzing the impacts of environmental 
policies on the power sector?  

• Or by system operators for system resource adequacy and reliability studies? 

• Or by utilities for integrated resource planning?  

Second, available resources confine the project scope.  Examples of questions that must be 
addressed include: who are the domain experts and are they in-house or, alternatively, 
consultants who must be contracted? What data are on hand or could be readily obtained? What 
optimization solvers and/or proprietary planning software (Section 2.2) are available? What 
computing resources can be used? The time for the initial planning phase is highly variable 
depending on the complexity of the problem and the experience of the organization, and may 
range from one to six months. 

Data collection, processing and database construction: The availability and quality of source 
data are of paramount importance for the success of any modeling efforts. As discussed in 
Sections 3.1 and 3.3 above, all the required data for constructing a co-optimization model exist. 
However, they are scattered in multiple places. In addition, certain data are confidential, while 
some others are proprietary, adding significant challenges in collecting all the required data in a 
timely fashion while staying within the project budget. A conservative estimate of collecting all 
the required data for the co-optimization to produce meaningful results would take six to nine 
months for a model covering the Eastern Interconnection. Merely obtaining the data is not 
enough, as the data has to be in the format that can be used by the planning model, and be of 
good quality. Hence, a data processing phase is needed after the data are collected. In addition, a 
database system is also required for passing the data to computer programs. The sophistication 
level of such a system could range from purely text files, to spreadsheet files, to SQL-based 
database management systems.  

A rough estimate for initial data collection could be up to 9 months, dependent on the amount of 
proprietary and confidential data needed. For data processing and database construction, it may 
take up to one year and beyond. The lengthy time for data collection and processing, on the other 
hand, shall not be a deterrent for model development, as such processes can be performed in 
parallel to model construction. In addition, to test model validity, a small-scale, test data set can 
be developed first, independent of real-system data collection.  

Model construction: The model construction phase contains two major tasks: 
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1.  Establish the mathematical formulation for co-optimization models, if an appropriate 
commercial or research software package is unavailable; and  

2.  Choose an appropriate optimization solver or design algorithms to solve the resulting 
model. 

The duration of the first task is mainly determined by two factors – the available domain experts 
and the sophistication of the model. The impact of the first factor is obvious, while the second 
factor refers to what features or functionalities are to be included in the model, which should be 
determined in the initial planning phase. The features, for example, may include some of the 
following:  

• Is demand response is to be explicitly incorporated in the model?  

• To what degree of sophistication are retrofit, retirement, and repowering options to be 
modeled? 

• How are uncertainties (variability in renewable outputs and load, power plant and 
transmission line outages, long-run technological, policy, and economic uncertainties) to 
be represented in the model?  

• How are energy storage, distributed generation, or microgrids to be modeled?  

Once the mathematical formulation is established, it will be known what optimization categories 
the model belongs to: linear programming, nonlinear (but convex) programming, mixed integer 
linear programming (MILP), stochastic programming (SP), or even dynamic programming (DP). 
The optimization categories dictate whether off-the-shelf optimization solvers could be directly 
used. For example, linear programming, convex quadratic and MILP models may be solved by 
CPLEX (IBM), Xpress-Optimizer (FICO) or Gurobi Optimizer. Even so, the scale of the models 
or their complexities may render the commercial solvers ineffective or unusable. In such cases, 
specialized algorithms (either to utilize the special structures of the problems at hand, or simply 
to utilize high performance computing) are needed, as discussed in Section 3.2, above. For other 
model categories (SP or DP), specialized algorithms have to be developed, as few commercial 
solvers are available6

                                                 
6 There are certain commercial optimization suites, such as GAMS and AIMMS,that can handle certain types of 
stochastic programming problems (such as stochastic programming with recourse constraints). However, there is 
relatively little documentation on their abilities to solve large-scale power system problems. 

.  

The length of the model construction phase can be highly variable. The formulation stage may 
take one to several months; while the algorithm development stage may take less than a month if 
commercial solvers are usable, to up to a year if new algorithms need to be designed. 

Coding/Debugging: The duration of the coding/debugging phase is mainly determined by five 
factors: 
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1. available human resources (and their competence level);  
2. if new algorithms are to be developed;  
3. coding language to be used;  
4. database system; and  
5. reporting requirements.  

The third factor, the coding language to be used, is largely determined by the second factor. If 
only commercial solvers are to be used, the coding effort (excluding the effort involved in 
creating reports from the optimization model’s solutions) only includes translating the 
mathematical formulation into computer languages and passing data (extracted from a database 
system) to the solver. In this case, not only the major programming languages, such as C/C++, 
Java, FORTRAN, are all suitable, but some specialized modeling languages are available as well, 
and they may significantly simplify and shorten the coding process. Such modeling languages 
include AMPL, GAMS, AIMMS, OPL (bundled with CPLEX), and Xpress-Mosel (bundled with 
Xpress-Optimizer), to name a few.  

These specialized optimization modeling languages have several advantages compared to general 
purpose programming languages. First, they are much easier to use when coding optimization 
models, as their syntax and semantics closely resemble the mathematical notation optimization 
and, in some software, human language. Second, it is easier to pass data to an optimization solver 
through a modeling language that is designed to do so. Third, it is generally easier to debug with 
programming languages.   

On the other hand, specialized modeling languages also have disadvantages, such as they may 
use more computing resources (such as memory) and are generally slower than general 
programming languages (such as C/C++).  Further, if new algorithms have to be developed, then 
a general programming language is likely to be the only option, as the programming capability of 
the modeling languages are in general very limited. As a result, the time estimate for 
coding/debugging efforts can be highly variable, ranging from a few weeks for simpler models 
with read-to-use, off-the-shelf solvers, to multiple years for model, algorithm and database 
development for specialized, state-of-the-art models for which only research-grade code is 
available. 

Testing: This (sometimes called verification) refers to the process of error finding, which differs 
from validation, to be discussed below, as validation is about the fundamental validity of the 
mathematical model. It is also different than debugging, as debugging is simply to ensure that a 
computer program can be compiled, while testing is to find errors in the modeling results after a 
model run is complete. Errors can come from multiple sources, including modeling errors (such 
as omitting a variable in a certain constraint), coding errors, and data errors. This is another 
lengthy process, especially for co-optimization models, due to their scale and complexity. A 
rough estimate for the testing phase is approximately six weeks to months, depending on whether 
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specialized or general modeling languages are used.  Specialized languages facilitate testing 
because of their easy-to-use interfaces and their orientation towards optimization problems. 

Validation: This refers to the process of validating models to ensure accurate and credible 
outputs. This phase has to follow the testing phase, when the modelers have tried their best to 
ensure that the model is error free. Error free, however, does not necessarily mean that the 
outputs from the model are automatically correct. There may be fundamental modeling flaws 
(such as how renewable energy is modeled, how demand is modeled, etc.) or input data errors 
(such as mismatch among supply, demand, and transmission buses). The common practice of 
validation includes comparison to well-established results of similar studies and backcasting, 
which is to use historical data as input data and see if the model produces reasonable solutions 
compared to real-world realizations. Scenario analysis could also be used for validation purposes, 
as they could reveal if the model behaves reasonably with changes in input parameters. A very 
approximate estimate of the validation phase is of three to six months. 
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4  APPLICATIONS: CASE STUDIES OF CO-OPTIMIZATION BENEFITS AND 
VALIDATION  

4.1 Introduction 

This section utilizes three different research-grade tools, GENTEP, NETPLAN, and the JHU 
software, to illustrate co-optimization of transmission and generation. The illustrations are 
performed on simplified power systems that were chosen because they enable intuitive 
understanding of the solutions provided by the software. Section 4.2 utilizes GENTEP, 
developed at Illinois Institute of Technology, in a series of illustrations on three or four bus 
networks to illustrate benefits of co-optimization. Section 4.3 utilizes NETPLAN, developed at 
Iowa State University, and JHU software, developed at Johns Hopkins University, on a 13 bus 
network to address validation protocols for co-optimization software. 

4.2 Potential Benefits of Co-Optimization: Some Simple Examples 

4.2.1 Introduction 

While co-planning of large-scale generation and transmission infrastructure is rare in the United 
States due to independent ownership of generation resources, co-optimization modeling can still 
provide valuable information to transmission planners. Compared to decoupled optimization 
(transmission-only, generation-only, or iteration between the two), co-optimization models that 
simultaneously solve for transmission and generation return solutions that are less expensive in 
total [113]. In this section, we present simple numerical examples of how co-optimization 
models, in comparison to traditional transmission-planning or generation-planning models, 
would benefit the planning processes. The potential benefits of the co-optimization models that 
are considered include: 

1. savings on both transmission and generation resources; 

2. consideration of retirements and uprates; 

3. treatment of tradeoffs between transmission and other resources, considering how 
variable resources affect those tradeoffs; 

4. efficient integration of non-traditional resources such as demand response, customer 
owned generation, energy storage/including pumped storage, and other distributed 
resources; 

5. optimization of fuel mix benefits; and 

6. improved assessment of the ramifications of environmental regulation/compliance 
planning. 
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These benefits are illustrated in a series of numerical examples based on three or four bus 
networks.  These examples are solved using a co-optimization model GENTEP [120,66,65].  
GENTEP is configured to produce transmission-only or supply-only solutions as well as full co-
optimization, thus providing meaningful demonstration of the benefits of co-optimization 
through benchmarking and comparison.   

4.2.2 Summary of optimization approaches: Generation, transmission, and co-optimization 
planning 

Figure 4-1 shows the structure of the GENTEP model that is used to solve the various examples 
in Section 4.2.3.  A detailed explanation of GENTEP is provided in Appendix II.  The core of the 
GENTEP model is the co-optimization of investment in generation, transmission, and microgrids, 
which we call the “master problem.” By setting either the generation capacity or transmission 
capacity to predetermined fixed values, generation-only and transmission-only planning can be 
simulated; if both are allowed to vary within the model, co-optimization is the outcome. 

 

Figure 4-1. Schematic of GENTEP methodology for co-optimization 

The master problem has the following structure: 

Objective function:  Minimize investment cost 
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Subject to constraints: 

• Availability of capital investment funds 

• Maximum capacity level of units and lines in a planning year 

• Maximum number of units and lines to be added in a planning year 

• Projected starting year of construction 

Output: Annual installation status of candidate generating units and transmission lines 

There are two subproblems that return important information to the master problem about the 
performance of the investment plants: the Reliability Subproblem and the Operation Subproblem.  
The former subproblem is structured as follows: 

Objective function:  Minimize mismatch between load and generation 

Subject to constraints: 

• Power balance 

• Unit dispatch limits 

• Line flow limits 

Output: Reliability status 

The Operations Subproblem, in turn, has the following structure: 

Objective function:  Operation cost minimization 

Subject to constraints:  Same as Reliability Subproblem 

Output: Optimality status 

The three versions of GENTEP (generation only, transmission only, and co-optimization) are 
used in the following section to solve a series of examples that illustrate the six types of benefits 
of co-optimization. In every case, we consider one year of operation (8760 hours), and assume 
that the same load applies in every hour. Some of the analyses below consider line or generator 
outage contingencies.  In those solutions, GENTEP’s objective function only includes costs from 
the base (no outage) scenario; however, a constraint generation procedure ensures that the 
generation is dispatched in the base scenario so that the system can be redispatched in a 
contingency such that expected amount of load that is unserved in the contingencies does not 
exceed an upper bound. 
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4.2.3 Analyses of benefit categories 

4.2.3.1 Benefits category 1: Savings on both transmission and generation resources 

The first type of benefits from co-optimization concerns the savings in costs of both investment 
and operations of the combined transmission-generation system. We illustrate those benefits by 
considering three examples below: a generation-only optimization, a transmission-only 
optimization, and a co-optimization. They are applied to different problems, so their costs cannot 
be directly compared; however, they illustrate the scope of each of the three problems, and the 
co-optimization example illustrates the consideration of transmission and generation tradeoffs. In 
the examples of this subsection, it is assumed that all transmission and generation equipment is 
100% reliable; this assumption is relaxed in later examples. 

Generation-Only Optimization: In Figure 4-2, we show the three bus network that connects 
two existing generators and two potential generators; the generation-only problem consists of 
choosing which (or both) of those generators to build, and how to operate them, subject to the 
existing network.  So in this example, transmission is not expanded. The relevant generator, 
transmission, and load data are provided in Tables 4-1 – 4-3.  

 

Figure 4-2. Network configuration for benefits category 
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Table 4-1. Generator data for benefits category 1, generation planning only 

Unit Min Capacity 
(MW) 

Max Capacity 

(MW) 

Fuel Cost 

($/MWh) 

Investment cost 

($/yr) 

G1 50 250 10 - 

G2 60 200 10 - 

G3 60 300 8 5,000,000 

G4 60 300 10 4,000,000 
Note: All investment costs in this table are annualized costs. 

Table 4-2. Line data for benefits category 1, generation planning only 

Line From bus To bus Reactance (pu) Capacity (MW) 
L1 

1 2 0.1 50 

L2 2 3 0.1 100 

L3 1 3 0.1 50 
Note: The reactances are used in a linearized dc load flow model in GENTEP; the units are in “per unit” (pu). 

 

Table 4-3. Load data for benefits category 1, generation planning only 

Planning Year D1 (MW) D2 (MW) D3 (MW) 

1 100 300 100 

 

In the generation-only planning problem, the existing units in the base case cannot satisfy the 
load, so new units must be added.  The optimal solution to this problem is obtained in 3 iterations 
of GENTEP. The optimal solution adds new generator 3, though it has a higher investment cost 
than generator G4. The resulting solution, including dispatch and load flows, is shown in Figure 
4-3. The total cost is $44,420,000/yr. 
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Figure 4-3. Solution for benefits category 1, generation planning only 

Transmission-Planning Only: We now turn to transmission-only planning. Figure 4-4 shows 
that the two transmission alternatives that can be used to interconnect a new generator at Bus 4. 
The objective function of the model includes only transmission investment costs (since generator 
G3 is assumed to be built, it is a sunk cost) and variable costs for the generator.  Tables 4-4, 4-5, 
and 4-6 provide the data. 

 

Figure 4-4. Network configuration and potential transmission alternatives for benefits category 1, 
transmission planning only 
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Table 4-4. Generator data for benefits category 1, transmission planning only 

Unit Min Capacity (MW) Max Capacity (MW) Fuel Cost ($/MWh) 

G1 50 150 10 

G2 100 200 8 

G3 50 100 10 
Note: Generator dispatch is constrained to be between the minimum and maximum values stated. 

 

GENTEP obtains the optimal solution for the transmission-only planning model in three 
iterations.  It chooses to install just one of the two lines, as shown in Figure 4-5. Line 2-4 is 
installed though it has a higher investment cost than the candidate line 3-4. The installation of 
Line 2-4 allows higher generation from the more economic Unit 2; hence it reduces the operation 
cost, and this reduction is greater than the expense of the line. The total investment and operating 
cost is $37,536,000/yr.   

Table 4-5. Line data for benefits category 1, transmission planning only

 

 

Table 4-6. Load data for benefits category 1, transmission planning alone
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Figure 4-5. Solution for benefits category 1, transmission planning only 

Co-optimization: The final of the three solutions illustrates how both generation and 
transmission alternatives can be considered at the same time by GENTEP. Figure 4-6 shows the 
network that is considered:  one line can be built, and investment in Generator 3 is also a 
possibility.  The two existing generators would be sufficient to meet the load if transmission is 
added; however, the line capacity from bus 2 to bus 4 is inadequate to meet bus 4’s load.  Thus 
either a new generator or a new transmission line is needed.  There is a tradeoff that only co-
optimization captures:  more transmission investment means that generation investment can be 
avoided. 

 
Figure 4-6. Network configuration and potential transmission and generation alternatives for 

benefits category 1, co-optimization 
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Tables 4-7 and 4-8 show the generator and line data; the assumed loads are the same as in the 
transmission-only planning problem above. 

Table 4-7. Generator data for benefits category 1, co-optimization 

Unit Min Capacity (MW) Max Capacity (MW) Fuel Cost ($/MWh) Investment cost ($/yr) 

G1 100 250 8 - 

G2 100 250 8 - 

G3 50 150 10 4,000,000 

 
Table 4-8. Line data for benefits category 1, co-optimization 

Line From bus To bus Reactance (pu) Capacity 

(MW) 

Investment cost 

($/yr) 

L1 1 2 0.1 200 - 

L2 2 3 0.2 200 - 

L3 1 3 0.1 200 - 

L4 2 4 0.2 100 - 

L5 3 4 0.2 150 5,000,000 

GENTEP is used to perform co-optimization of generation and transmission expansion planning 
in this example.  Table 4-9 shows the progress of the iterations of the algorithm, which 
converges in three iterations to the solution shown in the last column.  In the optimal solution, 
only the new line between buses 3 and 4 is installed, and the new generator is not needed.  This 
plan has a lower cost than any plan which would include building the generator.  Thus, if we had 
done a generation-only expansion plan with transmission capacity fixed at the existing level, the 
result would have been a higher cost (the solution shown as Iteration 2), which cost  2% more 
than the most efficient solution. Although the new line has a higher capital cost than the new 
generator, it is chosen because it enables more extensive use of the existing units, which have 
relatively low variable costs.  Figure 4-7 shows the resulting optimal investments and operations. 
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Table 4-9. Co-optimization solutions by iteration for benefits category 1 analysis 

 Iteration 1 Iteration 2 Iteration 3 (Final) 

Investment of G3 (1=yes) 0 1 0 

Investment of L5 0 0 1 

Dispatch of G1 (MW) - 145.82 200 

Dispatch of G2 (MW) - 154.18 200 

Dispatch of G3 (MW) - 100 0 

Total investment + operations 
  

- 33,784,000 33,032,000 

Convergence - 1.576% 0.026% 
Note: “Convergence” is the % difference between the upper and lower bounds of the objective function as 
calculated by the Benders decomposition algorithm used by GENTEP.  Under certain mathematical conditions, 
when the divergence between the bounds goes to zero, the resulting solution is proved to be the optimal solution 
to the original problem.  However, for practical problems, the user chooses a threshold for convergence so that 
the algorithm quits when the divergence is less than the threshold. 
 

 
Figure 4-7. Solution for benefits category 1, co-optimization 

4.2.3.2  Benefits category 2: Retirements 

This example illustrates how co-optimization results in lower costs when existing units are 
retired.  In particular, this example shows a case in which co-optimization is the only way to 
obtain a feasible plan that meets reliability criteria, while generation-only and transmission-only 
planning fail to do so. We also consider system reliability by using the Reliability Sub-problem 
of GENTEP to consider random, or “forced”, outages of generators and transmission lines, 
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whose probabilities are described by the “forced outage rate” assumptions in Table 4-10. As a 
result, there is a nonzero probability that load cannot be met, so our results will include a 
quantification of the expected energy not served (EENS).  The model imposes an upper bound on 
the EENS.  We set this bound to 5% of the load, which is equal to 109,500 MWh in one year 
when the hourly load is 250 MW, as it is in this example.   

(Note that the dispatch and EENS costs associated with any scenario involving a generator or 
line outage are not included in the cost function of the optimization.  Instead, GENTEP simply 
checks all contingency cases to ensure that the EENS does not exceed the upper bound, and if 
necessary systematically adjusts the base (no contingency) case in order to meet that bound.  All 
flows reported in the tables and figures of this section are for the base case without any outages; 
flows, generation, and load unserved for contingency cases are not reported.) 

More generally, retirement of existing generators can be considered as a decision alternative that 
can be modeled in both the generation-only and co-optimization models.  Although we do not 
illustrate that case, in general, co-optimization would result in lower total costs than generation-
only when such alternatives are considered because the transmission network can be optimized 
together with the new configuration of generation investment and operations. 

Figure 4-8 shows the possible network configurations and generation sites, while Tables 4-10, 4-
11, and 4-12 provide generator, line, and load data. 

 

Figure 4-8. Network configuration and potential transmission alternatives for benefits category 2 
analysis: Retirements 
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Table 4-10. Generator data for benefits category 2: Retirements 

Unit Min Capacity 

(MW) 

Max Capacity 

(MW) 

Cost 
($/MWh) 

Investment 

cost ($) 

Forced Outage 
Rate (FOR) 

G1 0 150 8 - 0.04 

G2 0 150 12 - 0.04 

G3 0 100 9 5,000,000 0.04 
Note: The FOR is defined here as the probability that the generator is unavailable in the simulated hour.  Outages of 
different generators are assumed to be statistically independent. 

 
Table 4-11. Line data for benefits category 2: Retirements 

Line From bus To bus Reactance 

(pu) 

Capacity 

(MW) 

Investment 

cost ($/yr) 

FOR 

L1 1 2 0.1 50 - 0.01 

L2 1 3 0.1 50 - 0.01 

L3 2 3 0.1 100 - 0.01 

L4 1 2 0.1 50 3,000,000 0.01 

L5 1 3 0.1 50 3,000,000 0.01 

L6 1 3 0.1 50 3,000,000 0.01 
 

Table 4-12. Load data for benefits category 2 analysis: Retirements 

Planning Year D3 (MW) 

1 250 

If Unit 2 is retired, then neither generation planning nor transmission planning can achieve a 
feasible solution. The lowest EENS that either can achieve exceeds the assumed 5% EENS 
criterion.  However, co-optimization does find a feasible solution by installing Lines 5 and 6, and 
generating Unit 3.  In this case the EENS is about 4% of the load which amounts to an LOLE of 
14 days per year in this hypothetical example. Thus, with the retirement of Unit 2, co-optimized 
planning is needed to achieve a feasible solution. Table 4-13 and Figure 4-9 document that 
solution. 
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Table 4-13. Three solutions for benefits category 2 analysis: Retirements 

 Generation 
Planning 

Transmission 
Planning 

Co-Optimization 

Investment 
State 

G3 - - 1 

L4 - - 0 

L5 - - 1 

L6 - - 1 

Dispatch of G1 (MW) - - 150 

Dispatch of G2 (MW) - - RETIRED 

Dispatch of G3 (MW) - - 100 

Planning Cost ($) INFEASIBLE INFEASIBLE 29,396,000 

EENS (% of load) - - 4.24 

 

 
Figure 4-9. Co-optimization solution for benefits category 2 analysis 

 4.2.3.3 Benefits category 3: Treatment of variable resources 

This example includes variable resources in the generation mix and shows how co-optimization 
can lower costs.  The assumed network is displayed in Figure 4-10, and Tables 4-14, 4-15, and 4-
16 document the generation, transmission, and load data.  Note that a 100 MW wind farm (G4) 
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has been installed at bus 1 (with capacity factor of 30% and variable operational cost of 
$2/MWh). We do not explicitly model variation in wind output in this simple example, but this is 
readily accommodated by GENTEP or any co-optimization model. 

Table 4-17 shows the three solutions. In the generation-only planning model, the load is supplied 
but the wind generation at G4 could not be dispatched due to network limitations. The 
transmission-only model does allow for dispatch of wind. Under co-optimization (whose solution 
is also shown in the Figure 4-11), both Line 6 and generation Unit 3 are installed; the new line 
enhances transfer of wind generation. The resulting solution is more than 2% lower than the 
transmission-only solution and 7% lower than the generation-only solution. 

 
Figure 4-10. Network configuration and potential transmission alternatives for benefits category 

3 analysis: Treatment of variable resources 
 

Table 4-14. Generator data for benefits category 3: Treatment of variable resources 

Unit Min Capacity 
(MW) 

Max Capacity 
(MW) 

Cost 
($/MWh) 

Investment 
cost ($/yr) FOR 

G1 0 150 8 - 0.04 

G2 0 150 12 - 0.04 

G3 0 100 9 5,000,000 0.04 

G4 0 100 2 - 0.04 
Note: G3 is a wind resource with capacity factor 0.3, and therefore only produces 30MW despite a 100MW capacity. 
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Table 4-15. Line data for benefits category 3: Treatment of variable resources 

Line From bus To bus Reactance 

(pu) 

Capacity 

(MW) 

Investment 

cost ($/yr) 

FOR 

L1 1 2 0.1 50 - 0.01 

L2 1 3 0.1 50 - 0.01 

L3 2 3 0.1 100 - 0.01 

L4 1 2 0.1 50 3,000,000 0.01 

L5 1 3 0.1 50 3,000,000 0.01 

L6 1 3 0.1 50 3,000,000 0.01 
 

Table 4-16. Load data for benefits category 3 analysis: Treatment of variable resources 

Planning Year D3 (MW) 

1 250 
 

 

Table 4-17. Three solutions for benefits category 3 analysis: Treatment of variable resources 
  Generation 

Planning Transmission Planning Co-Optimization 

Investment State 

G3 1 - 1 
L4 - 0 0 
L5 - 1 0 
L6 - 1 1 

Dispatch of G1 (MW) 0 70 70 
Dispatch of G2 (MW) 150 150 50 
Dispatch of G3 (MW) 100 - 100 
Dispatch of G4 (MW) 0 30 30 

Planning Cost ($) 28,652,000 27,199,200 26,571,200 
EENS (% of load) 3.373 3.326 1.526 
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Figure 4-11. Co-optimization solution for benefits category 3 analysis: Treatment of variable 

resources 

4.2.3.4 Benefits category 4: Efficient integration of non- traditional resources 

Non-traditional resources can include demand response, customer-owned generation, energy 
storage, and other types of distributed resources.  In this example, we illustrate the consideration 
of 25 MW of load reductions in each hour due to energy efficiency, which is a 10% load 
reduction.  This could also be viewed as 25 MW of demand response by consumers, whose bid is 
low enough that it is accepted by the ISO, or as a load reduction by consumers which is due to 
the local use of distributed generation at bus 3.   

With the exception of the demand reduction program, the load and transmission assumptions are 
the same as those in the previous example. Figure 4-12 shows the transmission and generation 
investment alternatives, and Table 4-18 provides the generator data. 

 
Figure 4-12. Network configuration and potential transmission alternatives for benefits category 

4 analysis: Treatment of demand reduction 
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Table 4-18. Generator data for benefits category 4: Treatment of demand reduction 

Unit Min Capacity 

(MW) 

Max Capacity 

(MW) 

Cost 
($/MWh) 

Investment 

cost ($/yr) 

FOR 

G1 0 150 8 - 0.04 

G2 0 150 12 - 0.04 

G3 0 100 9 5,000,000 0.04 

In the co-optimization solution (shown in Table 4-19 with the generation-only and transmission-
only plans), both Line 6 and generating Unit 3 are installed as shown in Figure 4-13.  Thus, co-
optimization modifies both the generation and transmission systems. With the reduced load, 
generation planning would be more economical than transmission planning, unlike the previous 
wind example. However, co-optimized planning is better than either generation or transmission 
planning alone, with both lower cost and lower EENS. 

 
Table 4-19.  Three solutions for benefits category 4 analysis: Treatment of demand reduction 

 Generation Planning Transmission 
Planning 

Co-Optimization 

Investment State G3 1 - 1 

L4 - 0 0 

L5 
- 

1 0 

L6 - 1 1 

Dispatch of G1 (MW) 25 125 125 

Dispatch of G2 (MW) 100 100 0 

Dispatch of G3 (MW) 100 - 100 

Planning Cost ($) 25,142,000 25,271,200 24,464,000 

EENS (% of load) 2.432 3.088 0.687 
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Figure 4-13. Co-optimization solution for benefits category 4 analysis: Treatment of demand 

reduction 

4.2.3.5 Benefits category 5: Fuel mix benefits 

This example illustrates the benefits of co-optimization when there are a mix of fuel types, in this 
case both thermal and wind. Line and load data are the same as the previous case. However, the 
150 MW thermal unit in bus 2 is replaced with a 100 MW thermal and a 50 MW wind unit, as 
shown in Figure 4-14. Table 4-20 shows the new generation mix. 

 

Figure 4-14. Network and generator investment alternatives, benefits category 5 analysis: Fuel-
mix benefits 
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Table 4-20. Generator data for benefits category 5: Fuel mix benefits 

Unit Type Min Capacity 

(MW) 

Max 
Capacity 

(MW) 

Cost 

($/MWh) 

Investment 

cost ($/yr) 

FOR 

G1 Thermal 0 150 8 - 0.04 

G2 Thermal 0 100 12 - 0.04 

G3 Thermal 0 100 9 5,000,000 0.04 

G4 Wind 0 50 2 - 0.04 

Solutions are shown in Table 4-21, and the co-optimized solution is illustrated in Figure 4-15. 
Like the previous example, investments in generator 3 and Line 6 are optimal, but only co-
optimization results in that solution.  Co-optimized planning reduces the planning cost and EENS 
compared to both generation-only and transmission-only planning.  

 
Table 4-21.  Three solutions for benefits category 5 analysis: Fuel mix benefits 

 Generation Planning Transmission 
Planning 

Co-Optimization 

Investment 
State 

G3 1 - 1 

L4 - 0 0 

L5 - 1 0 

L6 - 1 1 

Dispatch of G1 (MW) 0 100 100 

Dispatch of G2 (MW) 100 100 0 

Dispatch of G3 (MW) 100 - 100 

Dispatch of G4 (MW) 50 50 50 

Planning Cost ($) 24,272,000 24,396,000 23,768,000 

EENS (% of load) 3.417 3.775 1.439 

 



 100 

 
Figure 4-15. Co-optimization solution for benefits category 5 analysis: Fuel mix benefits 

In Table 4-22, the above solutions are compared with a set of solutions based on all thermal 
generation.  Addition of wind generation reduces overall costs for all three models, and EENS 
for transmission planning and co-optimization.  The largest improvements are obtained when co-
optimized planning is used (15.56% planning cost reduction and 19.78% reliability 
improvement).  Thus, in this case, co-optimization allows for more effective integration of low 
variable cost renewable power. 

Table 4-22. Comparison of all thermal and thermal + wind solutions for each planning procedure 
(generation, transmission, and co-optimization), benefits category 5 analysis

 

4.2.3.6 Benefits category 6: Improved assessment of the ramifications of environmental 
regulation/compliance planning 

In this example, shown in Figure 4-16, we consider CO2 emissions, with generators 3 and 4 
having less than half the emissions of generators 1 and 2.  A CO2 emissions constraint is added 
to GENTEP, so that cost is minimized subject to that constraint, as well as the already defined 
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constraint on EENS. We tighten that CO2 emissions constraint as much as possible in each of the 
three models, resulting in the solutions provided in Table 4-23. 

 
Figure 4-16. Co-optimization for benefits category 6 analysis: Environmental planning 

It turns out that co-optimization allows for the greatest emissions reduction. Using transmission 
planning, the model is infeasible if the emission limit < 212.5 tons/hour, while an emissions 
constraint below 164.5 tons/hr results in infeasibility for the generation only model.  Meanwhile, 
the co-optimized planning is feasible for an emissions limit of 116.5 ton. In that solution (Figure 
4-17), low-emission Units 3 and 4 are installed and dispatched instead of Unit 1. Line 5 is 
installed to allow for greater dispatch of Unit 4. 

 

Table 4-23. Generator data for benefits category 6: Environmental planning 

Unit Min Capacity 

(MW) 

Max Capacity 

(MW) 

Cost 

($/MWh) 

Investment 

cost ($/yr) 

FOR CO2 Emissions 
(ton/MWh) 

G1 0 150 8 - 0.04 0.85 

G2 0 150 12 - 0.04 0.85 

G3 0 100 10 5,000,000 0.04 0.37 

G4 0 100 10 5,000,000 0.04 0.37 

 

We tighten that CO2 emissions constraint as much as possible in each of the three models, 
resulting in the solutions in the Table 4-24. Co-optimization allows for the greatest emissions 
reduction. Using transmission planning, the model is infeasible if the emission limit < 212.5 
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tons/hour, while an emissions constraint below 164.5 tons/hr results in infeasibility for the 
generation only model.   

 
Table 4-24. Three solutions for benefits category 6 analysis: Environmental planning 

 Generation Planning Transmission Planning Co-Optimization 

Investment 
State 

G3 0 - 1 

G4 1 - 1 

L4 - 0 0 

L5 - 1 1 

L6 - 1 0 

Dispatch of G1 (MW) 0 100 0 

Dispatch of G2 (MW) 150 150 50 

Dispatch of G3 (MW) 0 - 100 

Dispatch of G4 (MW) 100 - 100 

Planning Cost ($) 28,776,000 29,528,000 35,776,000 

Emission (ton) 164.5 212.5 116.5 

Meanwhile, the co-optimized planning is feasible for an emissions limit of 116.5 ton. In that 
solution (Figure 4-17), low-emission Units 3 and 4 are installed and dispatched instead of Unit 1. 
Line 5 is installed to allow for greater dispatch of Unit 4. 

 
Figure 4-17. Co-optimization solution for benefits category 6 analysis: Environmental planning 
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4.2.3.7 Benefits category 7: Improved assessment of the resource adequacy 

In this case, the existing generation capacity, shown in Figure 4-18, is sufficiently larger than the 
load, but transmission line limit would constrain the flow so that not all of that generation is 
deliverable. The generator data are shown in Table 4-25. The co-optimized planning shown in 
Table 4-26 resolves the issue, i.e., increases the network transfer capability, decreases planning 
cost, and improves reliability. The solution is depicted in Figure 4-19 in which Line 6 and Unit 3 
are installed. In this case, there is no need to install Line 5.  Line 6 enhances transfer of low cost 
power of Units 1 to the load at bus 3. 

 
Table 4-25. Generator data for benefits category 7: Resource adequacy 

Unit Min Capacity 

(MW) 

Max Capacity  

(MW) 

Cost  

($/MWh) 

Investment  

cost ($) 

FOR 

G1 0 150 8 - 0.04 

G2 0 150 12 - 0.04 

G3 0 100 9 5,000,000 0.04 

 

Figure 4-18. Co-optimization solution for benefits category 7 analysis: Resource adequacy 
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Table 4-26. Three solutions for benefits category 7: Resource adequacy 

 Generation Planning 
Transmission Planning 

Co-Optimized Planning 

Investment 
State 

G3 1 - 1 

L4 - 0 0 

L5 - 1 0 

L6 - 1 1 

Dispatch of G1 (MW) 0 100 100 

Dispatch of G2 (MW) 150 150 50 

Dispatch of G3 (MW) 100 - 100 

Planning Cost ($) 28,652,000 28,776,000 28,148,000 

EENS (% of load) 3.329 4.134 1.794 

 

 

Figure 4-19. Co-optimization solution for benefits category 7 analysis: Resource adequacy 
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4.3 Benefits and Validation of Co-optimization: Application to a Simplified US Power 
Sector Network  

4.3.1 Introduction 

This section identifies ways to validate co-optimization tools. The following three approaches 
are adopted: 

(i) Perform comparative analysis between co-optimization models, 

(ii) Perform comparative analysis between a co-optimization model a traditional planning 
approach whereby generation resources and transmission are planned without co-
optimizing, and 

(iii) Perform sensitivity analysis where the user makes a change having obvious 
consequences and then identifies that the program output changes in a predictable fashion. 

In the approach (i), three kinds of co-optimization models are identified for the analysis. Each of 
these models differs in their way of treating transmission network modeling, and their manner in 
which co-optimization of generation and transmission options are performed. The three models 
are: 

Model 1: Simultaneous optimization of generation and transmission, where transmission is 
modeled as transportation pipelines.  This model is a Linear Program (LP). 

Model 2: Iterative optimization of generation and transmission until a co-ordination is achieved. 
The generation optimization is LP and transmission optimization is Mixed Integer Linear 
Programming (MILP) with DC power flow model. 

Model 3: Simultaneous optimization of generation and transmission, where transmission is 
modeled with DC power flow model, resulting in a MILP optimization problem. 

This section applies all three types of models.  Model 1 described above has been solved using 
both the software NETPLAN and the Johns Hopkins (JHU) model (Appendix II). Based on 
implementation of Model 1, the validation approaches (ii) and (iii) are presented in later sections. 
A 13-node U.S. national model has been used to present the benefits of co-optimization 
approaches under various scenarios. The sensitivities of the results are also studied against 
expected consequences under different assumptions of transmission costs. 

4.3.2 Scenarios 

Table 4-27 shows the various scenarios, where scenarios 1-4 are renewable-heavy and scenario 5 
is renewable-light, utilizing more conventional forms of generation. Because renewables have 
investment costs (for geothermal, due to drill depth) or capacity factors (for wind and solar) that 
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are location-dependent, transmission enables renewables to be built in their most economic 
location, and so it is expected that transmission will have more influence in the renewable-heavy 
futures. 

The different scenarios are characterized by the bounds on their yearly regional (13 NERC 
regions) investment levels for the various generation technologies. For each number 1-5, Case A 
represents generation-only optimization, and case B represents co-optimization of generation and 
transmission. In the various cases labeled A in Table 4-27, the transmission is not allowed to 
expand and is therefore constrained to the 2010 levels throughout the simulation. In the various 
cases labeled B in Table 4-27, the capacity of each transmission link is also a decision variable in 
the optimization, and so transmission capacity is grown as needed in order to minimize the total 
investment and production cost. Therefore the difference in cost between each Cases A and B 
provides a valuation of the transmission built. This valuation is made possible via co-
optimization.  
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Table 4-27. Scenarios for validating co-optimization of generation and transmission resources 

Scenario Yearly Generation investment limits in every region Optimization 

A1 Coal, IGCC, IPCC & Hydro - 0 GW, 

Nuclear, NGCC, OTEC & Tidal - 1 GW,  

Geothermal (only west) 

Generation 
resources 

–  

NWP, RA, CNV - 5 GW;  

ERCOT, MAPP, SPP - 3GW  

Wind (Inland and offshore) & Solar (PV and Thermal) - 7 GW 

Carbon tax - $30/ short ton 

B1 Co-optimization 

A2 Coal, Nuclear, NGCC, IGCC, IPCC & Hydro - 0 GW, 

OTEC & Tidal - 1 GW,  

Geothermal (only west) 

Generation 
resources 

–  

NWP, RA, CNV - 5 GW;  

ERCOT, MAPP, SPP - 3GW  

Wind (Inland and offshore) & Solar (PV and Thermal) - 7 GW 

Carbon tax - $30/ short ton 

B2 Co-optimization 

A3 Coal, Nuclear, NGCC, IGCC, IPCC, Hydro, Geothermal, OTEC & 
Tidal - 0 

Wind (Inland and offshore) & Solar (PV and Thermal) -  10 GW 

Carbon tax - $30/ short ton 

Generation 
resources 

B3 Co-optimization 

   

A4 Coal, Nuclear, NGCC, IGCC, IPCC & Hydro - 0 GW, 

OTEC & Tidal - 1 GW,  

Geothermal (entire nation) – 3 GW  

Wind (Inland and offshore) & Solar (PV and Thermal) - 2 GW 

Carbon tax - $30/ short ton 

Generation 
resources 

B4 Co-optimization 

A5 Coal, Nuclear, NGCC, IGCC, IPCC, Hydro, Geothermal, OTEC, 
Tidal, Wind (Inland and offshore) & Solar (PV and Thermal) -  2 

GW 

No Carbon tax 

Generation 
resources 

B5 Co-optimization 
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Note:

4.3.3 Numerical Results Using NETPLAN 

 Integrated Gasification Combined Cycle (IGCC), Integrated Pyrolysis Combined Cycle (IPCC), Natural Gas 
Combined Cycle (NGCC), Ocean Thermal Energy Conversion (OTEC)  

Inflation and discount rates are assumed to be 2% and 7% respectively. Load growth is modeled 
at 2%/year. In all cases, a cost of $1B/GW/1000miles (2010 dollars) is placed on interregional 
transmission (expansion was only considered for adjacent regions). It is assumed that there is no 
difference between the cost of added AC and DC transmission capacity.  

4.3.3.1 Validation approach (i) and (ii): Benefits  

Results are summarized in Table 4-28, where net present-worth and the annualized cost, with and 
without the transmission expansion are provided. When transmission is $1B/GW/1000miles, the 
differences in net present-worth range from $239B for the “mostly renewable, geothermal-light” 
case to $492B for the “all-renewable, geothermal-heavy” case. 
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Table 4-28. Summary of cost results 

Cases Case description Transmission Cost (Billion$) 

   Present worth (2010 
dollars) 

Annualized over 40 
years 

A1 Mostly renewable,  

geothermal-light 

Generation only 5013.12 376.03 

B1 Co-optimization 4773.96 358.09 

  Difference 239.16 17.94 

A2 All-renewable,  

geothermal-light 

Generation only 5517.83 413.89 

B2 Co-optimization 5059.38 379.50 

  Difference 458.45 34.39 

A3 All-renewable,  

no geothermal 

Generation only 5328.11 399.66 

B3 Co-optimization 5053.70 377.57 

  Difference 274.41 20.58 

A4 
All-renewable,  

geothermal-heavy 
Generation only 5457.63 409.37 

B4 Co-optimization 4965.48 372.47 

  Difference 492.15 36.92 

A5 Business as usual Generation only 4655.70 349.22 

B5 Co-optimization 4650.10 348.80 

  Difference 5.60 0.42 

Generation investments made for Cases A1 and B1, and for Cases A2 and B2, are illustrated in 
Figure 4-20. The decreased generation capacity of Case B1 relative to Case A1 shows that the 
expanded transmission of Case B1 enables use of wind with higher capacity factor relative to 
Case A1; a similar observation can be made in comparing Cases A2 and B2. 
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Figure 4-20. Generation investments over 40 years - Cases A1, B1 & Cases A2, B2 

Transmission investments made for Cases B1 and B2 are illustrated in Figure 4-21. This chart 
shows the additional transmission capacity developed over and above the existing transmission 
capacity, where it is clear that the largest investments are made for MAIN to ECAR, MAIN to 
MAPP, MAIN to STV, SPP to STV, and RA to SPP, with the investment being about 100 GW in 
both cases for MAIN to ECAR. (Definitions of region abbreviations are shown in the map in 
Figure 4-22, below.) Total invested transmission capacity is larger for Case B2 than for B1 
because Case B1 was allowed to build some new generation that is not locationally constrained 
(nuclear) and was therefore built close to the load that it supplied, avoiding some of the 
transmission needed in Case B2. In contrast, Case B2 was allowed to build only the locationally 
sensitive renewables; here it was more economical to build the more cost-effective but distant 
generation and required transmission than to build the less cost-effective generation close to load. 
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Figure 4-21. Transmission investments over 40 years - Case B1 & Case B2 

Figures 4-22 and 4-23 geographically illustrate the additional transmission capacity for Cases B1 
and B2 respectively. These figures also provide energy generation and consumption (in Quads). 
These figures indicate that the energy generally flows west to east, reflecting the facts that the 
most economical renewables are in the Midwest or West, and a high percentage of the load is in 
the East, particularly in ECAR and STV. 
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Figure 4-22. Generation mix and transmission investment over 40 years - Case B1 

 
Figure 4-23. Generation mix and transmission investments over 40 years - Case B2 

Transmission investments made for Cases B3 and B4 are illustrated in Figure 4-24. The 
interregional corridors receiving the most transmission investment for Case B3 are generally the 
same as for Cases B1 and B2, although the amounts are somewhat different for some corridors. 
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On the other hand, Case B4 invests in some corridors that received little or no investment in 
other cases, including MAPP to NWP and NY to NE, while most other corridors received 
significantly less investment (e.g., 40 GW in MAIN to ECAR as opposed to 100 GW or more in 
other cases). This was because geothermal investment was constrained to be light and only in the 
West (Cases B1 and B2) or nonexistent (Case B3), whereas Case B4 allowed geothermal 
investment in both West and East. Also, the total invested transmission is significantly smaller 
for Case B4 than others due to the presence of the geothermal in the East that relieved part of the 
need for transmission that was otherwise required to move energy from the West and Midwest to 
the East. However, the costs for geothermal, being functions of expected drill-depth, are 
uncertain, and so it is not clear that Eastern geothermal investment can be economically 
attractive. 

 
Figure 4-24. Transmission investments over 40 years - Case B3 & Case B4 

Figures 4-25 and 4-26 geographically illustrate the additional transmission capacity for Cases B3 
and B4 respectively. It is interesting to observe that the flow direction for Cases B1, B2, and B4 
(with geothermal) is West to Midwest to East, whereas the flow direction for Case B3 (with no 
geothermal) is Midwest to West and Midwest to East. This shows that, without geothermal; the 
Midwestern wind significantly increases its presence in supplying parts of the entire nation. 

Figure 4-27 shows the generation production mix for the reference year, Cases B1 and B5 over 
all the 40 years. The 100% of pie-chart for Cases B1 and B5 represents about 2.2E8 GWh (220 
Million GWh) of production over 40 years. The reference year portfolio is dominated by coal 
generation, followed by nuclear and natural gas. Based on the current cost assumptions, the 
renewable-light case directed the future portfolio towards nuclear and coal. It is observed from 
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Figure 4-27 and Table 4-29 that Case B5, dominated by nuclear and coal units, allows for much 
less investment in transmission overlay (in GW-Miles) compared to Case B1 with higher 
penetration of wind and geothermal. This is also reflected in Table 4-28, where it shows that the 
cost benefits of transmission under Case B1 is highly promising compared to Case B5. 

 
Figure 4-25. Generation mix and transmission investments over 40 years - Case B3 

 
Figure 4-26. Generation mix and transmission investments over 40 years - Case B4 
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Figure 4-27. Generation production mix – Reference year, Cases B1 and B5 (over 40 years) 

Table 4-29 shows that the total cost of Case B5 is about $123.86B less than Case B1. However, 
assuming a carbon cost of about $30/Short ton, Case B1 promises a carbon credit of about 
$1245B (~10 times the cost difference between the portfolios) by virtue of its low CO2 emitting 
portfolio.  

Table 4-29. Summary of results 

Cases Case description 
Transmission 

(2010 Billion $ (GW-Miles)) 
Cost (2010 
Billion $) 

CO2 Emission 
(Short ton) 

B1 
Mostly renewable, 

geothermal-light 
63.09 (126945.9) 4773.96 1.75E+10 

B5 Business as usual 5.23 (7167.8) 4650.10 5.90E+10 

 Difference 57.86 (119778.1) 123.86 -4.15E+10 

 

4.3.3.2 Validation approach (iii): Sensitivities 

To determine the sensitivity of results to transmission cost, Cases B1-1.5T and B1-2T were run, 
where transmission costs were increased to $1.5B/GW/1000 miles and $2B/GW/1000 miles 
respectively. The transmission topology identified was very similar to that of Case B1 as seen in 
Figure 4-28, with changes in the capacity investments across various corridors. As the 
transmission cost increases, there is decreasing investments in North-West to Mid-West (NWP to 
MAPP and NWP to RA) and Mid-West to East (MAPP to MAIN, MAIN to STV, MAIN to 
ECAR) corridors, and increase in South-West to East corridors (RA to SPP and SPP to STV). 
This is because the increase in transmission cost mainly spurred increase in geothermal 
generation investments in South-West while decreasing wind investments in North-West to 
achieve an overall cost-effective portfolio. Figure 4-29 indicates an overall increase and decrease 
in geothermal and wind representations respectively in the portfolios with increasing 
transmission cost. 
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Also, 50% and 100% increase in transmission cost only decreases net economic benefit by about 
14% and 25% respectively (i.e., from $239B to $206B, and $239B to $178B respectively). These 
observations suggest that the long-term benefit obtained from expanded transmission is not very 
sensitive to the transmission cost. This is a confirmation of the well-known fact that the 
transmission cost is generally a relatively small percentage of the composite long-term cost of 
building and operating power systems, as also seen from Table 4-29. 

 
Figure 4-28. Transmission investments over 40 years - Cases B1, B1-1.5T & B1-2T 

 
Figure 4-29. Generation investments over 40 years - Cases B1, B1-1.5T & B1-2T 
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4.3.4 Validation Results Using JHU Software 

In the JHU model, new lines within synchronized regions (EI, ERCOT, WECC) are assumed to 
be AC, so that Kirchhoff’s voltage law is enforced within those regions, while lines between any 
two of those regions are assumed to be DC, so that their flows are controllable. Ten hours per 
year are considered; wind and load shapes are represented by taking a sample of 10 hours in each 
year that capture the averages, ranges, and correlations among regions. Details on these and all 
other assumptions are provided elsewhere.7

4.3.4.1 Economic benefits of co-optimization 

 

In adapting the scenarios to the JHU model it was assumed that the annual generation investment 
applied only over a twenty-year period. In the JHU model, infrastructure investment is modeled 
as two distinct ten-year periods. The first ten-year period occurs before any operations occur, 
while the second takes place alongside the first period of operations, followed by a final period 
with only operations. This time structure is used to account for the time it takes to plan and build 
new infrastructure before it can be used. The two-stage structure described is compatible with 
extending the model to a multistage stochastic formulation in which investment commitments 
have to be made well in advance of operations (here, a ten year lead time is assumed). However, 
in the deterministic solutions considered in this report, the lag time does not affect the solutions, 
so the JHU model can be viewed as considering investments and operations for two years: 2020 
and 2030, with the 2020 results assumed to apply to each of the years in the range 2020-2029, 
and the 2030 results applying to 2030-2059. 

An important assumption in the JHU model was that transmission capacity additions between 
regions would be in large (10 GW) increments. This was necessary to obtain quick solution times 
for the model that includes Kirchhoff’s laws; the voltage law is enforced in the JHU model by a 
set of binary variables, one for each possible amount of transmission between the regions. 
Because transmission is added in large lumps, differences between some model runs might be 
obscured if their optimal transmission amounts between regions would be small relative to 10 
GW. 

Table 4-30 presents the present value and the annualized cost from applying the JHU model to 
the modeled system under each of the five scenarios without (Model 0) and with co-optimization 
(Model 3). The present value was discounted back to the very first year simulated in the model 
(2020). The annualized costs are calculated over a 40-year period of operations starting in 2020 
and ending in 2050. This was calculated by computing the present worth in year 2020 and then 
annualizing this value over 40 years using a 40 year annualization factor and a real interest rate 
of 4.9%. 

                                                 
7 Documentation and databases can be obtained on request from the authors. 
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Table 4-30. Summary of cost results 

 

Cases 

 

Case description 

 

Transmission 

Cost (Billion$) 

Present value (2011 
dollars) 

Annualized 
over 40 years 

A1 Mostly renewable, 
geothermal-light 

Fixed 1655.59 153.55 

B1 Expanded 1614.04 149.69 

  Difference 38.03 3.85 

A2 All-renewable, 
geothermal-light 

Fixed 1845.57 171.17 

B2 Expanded 1679.40 155.75 

  Difference 166.18 15.41 

A3 All-renewable, no 
geothermal 

Fixed 2183.62 202.52 

B3 Expanded 1937.73 179.71 

  Difference 245.89 22.81 

A4 All-renewable, 
geothermal-heavy 

Fixed 1795.25 166.50 

B4 Expanded 1757.22 162.97 

  Difference 38.03 3.53 

A5 Business as usual Fixed 1355.95 125.76 

B5 Expanded 1355.95 125.76 

  Difference 0.00 0 

 

Table 4-31 contains the percentage savings realized by co-optimization under each of the five 
scenarios. The savings realized ranged between 0% and 11.26%. Given that transmission 
investment costs are well below 10% of the total present worth of generation investment and 
operations together, this shows that “smart” transmission investment that accounts for the effect 
of such investments on generation siting and mix can result in savings that equal or exceed the 
out-of-pocket investment cost of transmission itself.   

In the four transmission friendly scenarios a high carbon tax and varying quality of renewable 
resources drove investments in transmission, which allowed for more cost-effective renewables 
to be built. Under the business as usual case (Scenario 5), which excluded a carbon tax, near-load 
conventional generation units along with some renewables were optimal additions under both the 
generation and co-optimization planning approaches.  New transmission additions could not be 
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justified, even in the co-optimization case because fuel and capacity cost differences among 
regions for conventional generation do not differ enough to justify the cost of the assumed 10 
GW minimum transmission addition size.   

Table 4-31. Co-optimization cost reductions 

Scenario Case description Co-optimization cost reduction 

1 Mostly renewable, geothermal light 2.51% 

2 All renewable, geothermal light 9.00% 

3 All renewable, no geothermal 11.26% 

4 All-renewable, geothermal heavy 2.12% 

5 Business as usual 0.00% 

4.3.4.2 Effects of co-optimization upon generation capacity investment 

We now consider the effect of co-optimization on the mix of new generation, and in particular 
upon the economics of new renewables. 

First, considering scenarios 1 (mostly renewable, geothermal light) and 2 (all renewable, 
geothermal light), shown in Figure 4-30, the co-optimization approach increased investment in 
intermittent resources as better quality renewable resources were made available by expanding 
transmission. Total GW of installed generation increased, because intermittent resources with 
low capacity factors in solutions B displace some of the new fossil capacity with higher capacity 
factors in solutions A. 

 

Figure 4-30. Cumulative generation capacity additions in each scenario solved with and without 
co-optimization (2020 and 2030) 
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In scenario 3 (all renewable, no geothermal) only intermittent resources were available for 
construction. With the addition of co-optimization, on-shore wind resources replaced more 
expensive off-shore resources. The total added capacity did not differ significantly as one 
intermittent resource was substituted for another as allowed with expanded transmission. This 
result indicates that off-shore wind is made more attractive if new transmission cannot be built, 
and that a significant part of the benefit of new interregional transmission is investment cost 
savings that result from taking advantage of lower cost renewables. 

In scenario 4 (all renewable, on-shore wind dominated), geothermal renewables additions were 
limited to 2 GW/Year, and central solar was also limited.  As a result significantly more on-shore 
wind built. In the co-optimization case, the addition of geothermal resources was shifted west 
where capital costs of new capacity are cheaper. Finally, in scenario 5 (business as usual case), 
co-optimization did not change the generation or operation of the system as no additional 
transmission was added in B5. 

Table 4-32 indicates how much the generation investment policies differ between a generation 
planning approach and a co-optimization approach by quantifying the absolute difference 
between the two generation investment plans. That is, the absolute value of the difference 
between the amount of capacity of each type in each region is calculated between solutions A 
and B, and then summed up over all types and regions. This measure captures not only the 
differences in total national capacity (as indicated in Figure 4-30), but also changes in the 
distribution.  For instance, if 100 GW total of wind is installed in A, and the same amount in B, 
but in entirely different regions, the absolute value of the difference is then 100 GW, which 
reflects the impact that co-optimization had on siting.   

Table 4-32. Cumulative deviations in generation additions between co-optimization and 
generation planning (2020 and 2030) 

Scenario Case description 
Sum of absolute value of deviations (GW) 

1 Mostly renewable, geothermal light 187.21 

2 All renewable, geothermal light 341.20 

3 All renewable, no geothermal 488.50 

4 All-renewable, geothermal heavy 262.36 
5 

Business as usual 0 

Table 4-32 indicates that even when the total generation capacity is not changed by co-
optimization, the patterns can greatly change. Scenario 3 represents that case. Thus co-
optimization not only potentially saves investment costs, it can make a huge difference in the 
type and location of generation investment.  
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Figures 4-31 – 4-34 provide additional details on the effects of co-optimization on generation 
investment patterns.  Starting with scenario 1 (mostly renewable, geothermal light), Figure 4-31 
shows that wind generation capacity was greatly expanded under co-optimization (B1). This 
added generation replaced conventional generation units and higher cost intermittent resources 
that were economic in A1 because of tighter transmission constraints. (Note however that the 
capacity of new wind is much greater than its energy provision because of its lower capacity 
factor relative to other new resources. Thus, overall capacity increases under co-optimization as 
intermittent resources with a lower effective capacity factor replace non-intermittent resources.) 
Proceeding to scenario B2 (all renewable, geothermal light) in Figure 4-32, co-optimization 
results in installation of better quality renewables to replace more expensive (off-shore) 
counterparts installed in A2.   

Considering scenario B3 (all renewable, no geothermal), Figure 4-33 shows that the application 
of co-optimization and expansion of transmission allows for lower quality intermittent resources 
to be replaced with higher quality resources. The ratio of replacement is nearly 1:1 as the 
intermittent resources being replaced have similar capacity factors as their replacements. Also, 
PV and thermal solar are shifted from Florida to the far west.  Meanwhile, in scenario B4 (all 
renewable, geothermal heavy), additional transmission capacity in the co-optimized solution 
allows a westward shift of geothermal energy production from high capital cost locations in the 
east to more efficient geothermal locations in the west (Figure 4-34). Slight shifts in the location 
of OTEC, and a downward shift in wind investment also take place. 

 

 
Figure 4-31. Effects of co-optimization on capacity additions: Differences between generation 

capacity additions in B1 versus A1 as a result of co-optimization 
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Figure 4-32. Differences between generation capacity additions in B2 versus A2 as a result of co-

optimization 

 
Figure 4-33. Differences between generation capacity additions in B3 versus A3 as a result of co-

optimization (cumulative 2020+2030) 
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Figure 4-34. Differences between generation capacity additions in B4 versus A4 as a result of co-

optimization (cumulative 2020+2030) 

In Scenarios A5 and B5 (business as usual), identical generation investment and operation 
decisions were made, and transmission investments were made in neither. In these scenarios 
without a carbon tax or significant limits on the construction of non-renewable generation, a 
generation mix consisting mostly of combustion turbines and nuclear was built. These two 
generation technologies do not have significant differences in capital or operating costs across 
regions, and were instead built close to the load centers to meet local needs. As a consequence 
there are not strong motivations to construct new interregional transmission capacity. 

4.3.4.3 Effects of alternative scenarios on transmission and generation additions under co-
optimization 

In the JHU model runs, co-optimization yields in transmission investments that are justified by 
regional differences in fuel and capital costs and availability of resources. This section highlights 
how different assumptions concerning the generation resources can affect decisions concerning 
transmission additions and generation mix that are recommended by co-optimization.   

Transmission capacity additions in the JHU model are motivated by interregional price 
differences and the quality of intermittent renewable resources. In scenarios B1 and B2, the 
expansion of transmission capacity appears to have been driven primarily by the resource quality 
of intermittent generation, since transmission is built radially from regions, such as MAPP and 
SPP, with high quality wind resources (Figures 4-35 and 4-36).  DC lines are also built to link 
the three interconnections (EI, ERCOT, and WECC). Figure 4-37 directly compares the amounts 
and locations of transmission additions in those two scenarios.   
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Both scenarios B1 and B2 expanded transmission along similar corridors. However, less 
transmission was needed in scenario B1 as low carbon conventional plants (nuclear) could be 
built in all regions.  Differences in fuel and capital costs for conventional thermal plants are not 
sufficient to motivate large investments in transmission. In scenario B2 (all renewable, 
geothermal light) transmission capacity was expanded along most of the same corridors as in 
scenario B1, except at significantly higher capacities. The lack of nuclear power necessitated 
additional expansion of geothermal as well as additional interconnections with the Western 
Interconnection.   

Figure 4-35. Transmission capacity, Scenario B1 (mostly renewable, geothermal light) (Height 
of the bar in map is proportional to 2020+2030 generation additions; Key shows bar height for 

65 GW) 
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Figure 4-36. Scenario B2 transmission and generation capacity additions (2020+2030) 

 
Figure 4-37. Comparison of transmission capacity additions in scenario B1 (mostly renewable 

co-optimization) and scenario B2 (all renewable co-optimization). (For region abbreviation 
definitions, see Figure 4-35) 
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Continuing on to scenarios B3 and B4, the co-optimization model made heavy investment in 
renewable resources as well as transmission capacity. These scenarios demonstrate strikingly 
different patterns in transmission expansion (Figures 4-38 – 4-40). Under B3 there is significant 
expansion along corridors connecting to regions with high quality wind resources (Figure 4-38). 
In that scenario, the only renewable investment allowed were in intermittent renewable resources 
(solar and wind), and not geothermal. As a consequence regions with the best quality intermittent 
resources were heavily invested in. Transmission lines built in this scenario were primarily 
motivated by interregional differences in renewable resource quality. By contrast, in scenario B4, 
the expansion of intermittent renewable resources was reduced to 2 GW annually, but 
geothermal investment was allowed outside of the West.  That scenario’s transmission expansion 
(Figure 4-39) was therefore driven by transmission of geothermal energy from the west, where 
geothermal investment is relatively inexpensive, to the east. That geothermal investment 
complemented wind investment in regions with high resource quality.  

 

 
Figure 4-38. Transmission capacity additions (2020+2030), Scenario B3 (all renewable, no 

geothermal) (Height of the bar in map is proportional to 2020+2030 generation additions; Key 
shows bar height for 100 GW) 
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Figure 4-39. Transmission capacity additions (2020+2030), scenario B4 (all renewable, 

geothermal heavy)  (The height of the bar in the key is equivalent to cumulative generation 
additions of 29 GW) 

The differences between scenarios B3 and B4 can be mostly clearly seen by the lack of 
investment in MAPP-SPP and ERCOT-SPP in scenario B4 (Figure 4-40). Since the expansion of 
wind is limited in scenario B4, the benefits of connecting wind regions to reduce the effect of 
intermittency is reduced.  Transmission investment in that scenario is redirected by the need to 
move geothermal energy from west to east.  Meanwhile, in B3, transmission expansions between 
MAPP and SPP or SPP and ERCOT are driven by the need to export wind power, while in case 
B4 these expansions did not take place. 
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Figure 4-40. Comparison of transmission capacity additions in scenario B3 (all renewable, 
geothermal light co-optimization) and scenario B4 (all renewable, geothermal heavy co-

optimization) 

4.3.4.4 Suboptimality of co-optimization via iteration between generation planning and 
transmission planning: Co-optimization model 2 

Because full co-optimization involves a large model with both transmission and generation 
capacities by location as decision variables, an alternative co-optimization approach has been 
proposed, which is Co-optimization Model 2.  It alternates between optimization of generation 
investment given a fixed grid configuration, and optimization of the network given a fixed 
pattern of generation investment.  Mathematically, it can be proven that the total cost of the 
system cannot worsen between iterations, and could improve.  However, this iterative approach 
cannot be guaranteed to yield the same optimal solution or full set of benefits as complete co-
optimization (Model 3), and the example below illustrates this fact. 

We have tested the iterative approach of Model 2 by executing five iterations as follows for the 
scenario 2:  

1. Optimize generation investment, given the 2010 grid.  Thus, there are no transmission 
investment decision variables in this iteration.  (This is the same as Model 0, scenario 
A2.) 

2. Given the optimal pattern of generation investment from Iteration 1, optimize the 
network additions.  Generation operation in all years is optimized, but capacity is fixed at 
the Iteration 1 values. 

3. Given the expanded transmission network from Iteration 2, re-optimize generation 
investment. 
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4. Given the optimal pattern of generation investments from Iteration 3, re-optimize 
network additions. 

5. Given the expanded transmission network from Iteration 4, re-optimize generation 
investment. 

A full implementation of Model 2 would continue the iterations until the solutions no longer 
change.  Here, we quit iterating after Iteration 5 (the third generation capacity optimization).   

This iterative approach (Model 2) as well as the simultaneous co-optimization model (Model 3) 
was applied to scenario 2 (all-renewable, geothermal light), resulting in the following costs:   

Iteration 

Model 2: Iteration 1. Optimize Generation (A2, Table 4-27) 

Cost ($ Billion) 

1845.57 

Model 2: Iteration 2. Optimize Transmission 1765.83 

Model 2: Iteration 3.  Re-Optimize Generation 1723.83 

Model 2: Iteration 4. Re-Optimize Transmission 1715.91 

Model 2: Iteration 5: Re-Optimize Generation 1711.37 

Model 3: Full Co-Optimization (B2, Table 4-27) 1679.40 

 

Figure 4-41. Comparison of the cost convergence of the Model 2 iterative co-optimization model 
with the lower bound set by the Model 3 full co-optimization approach. 

These results show that Model 2 has nearly, but not fully converged after five iterations.  The 
results illustrate how applying this iterative approach can reduce the total cost of the system.  As 
expected, the cost improves with each iteration (as we explained, it cannot get worse), but at a 



 130 

diminishing rate.  Most importantly, iterative solution of Model 2 was unable to achieve the 
same level of cost reductions as the fully co-optimized approach. The cost reduction relative to 
generation planning subject to a fixed grid ($134B) is just over 80% of the $166B cost reduction 
that full co-optimization can achieve. 

In addition to subsequent iterations of Model 2 not fully achieving the full cost reduction benefits 
of co-optimization (Model 3), the transmission plans between the two models also differ spatially. 
Spatially the transmission plans found by the second (Figure 4-43) and fourth (Figure 4-44) 
iterations of Model 2 bear some similarity to the full co-optimization case (Figure 4-45), but also 
differ in important ways. With subsequent iterations, the corridors SPP-STV as well as MAPP-
MAIN-ECAR are further enforced, although by iteration 4 they still have less capacity added 
than in Model 3. Subsequent iterations of Model 2 did not produce the same network of 
reinforcements as full co-optimization; for instance, in iteration 4 a line is added MAPP-SPP that 
does not appear in the full-optimization (Model 3, Figure 4-44). Furthermore the line ERCOT-
SPP appearing in Model 3 (Figure 4-45) never appears in the iterated transmission investment 
solution. 

 
Figure 4-42. Cumulative transmission additions optimized in response to a generation plan that is 

an average of generation planning and full co-optimization. The thicknesses of the lines are 
proportional to GW transmission additions between 2010-2030. 
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Figure 4-43. Cumulative transmission additions made in the second iteration of Model 2. The 
thicknesses of the lines are proportional to GW transmission additions between 2010-2030 

 

Figure 4-44. Cumulative transmission additions made in the fourth iteration of Model 2. The 
thicknesses of the lines are proportional to GW transmission additions between 2010-2030 
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Figure 4-45. Cumulative transmission additions made under Model 3: Full Co-optimization. The 
thicknesses of the lines are proportional to GW transmission additions between 2010-2030 

 

These differences in transmission plans between the two models appear because each iteration 
lacks information about the response one planner has to the other’s decisions.  For instance, 
Model 3 builds a ERCOT-SPP line to enable more wind generation and less baseload generation 
to be built in ERCOT, so that excess wind can be exported, while imports to ERCOT can replace 
wind when it isn’t blowing.  To arrive at this solution requires that both generation and 
transmission be considered at the same time in a model, which the iterative (Model 2) approach 
does not do.  This confirms that Model 2 does not achieve full co-optimization, but rather should 
be viewed as a heuristic that can gain a significant portion but not all of the benefits of co-
optimization. 

Also of interest are the differences among the amounts invested in transmission within these 
solutions.  In particular, the three transmission planning models (Model 2 Iteration 2 
(transmission-only), Model 2 Iteration 4 (transmission-only), and Model 3 (full co-optimization)) 
had $54.3B, $70.9B, and $116.46B respectively, of transmission investment (present worth) over 
the planning time horizon (Table 4-33).  Particularly striking are the differences in the first 
period (2010-2020), when the fully co-optimized model invests in roughly three times as much 
transmission as the transmission-only models. For instance, the ERCOT-SPP line is built in 
Model 3, but not in the iterative Model 2, again because when Model 2 considers transmission it 
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does not recognize that generation investment would shift (saving gen investment and operations 
costs) at the same time.   

As a sensitivity analysis to assess whether this result just depends on the initial generation 
scenario, Table 4-33 shows another transmission-only run based upon a generation investment 
scenario that is an average of the co-optimized generation investment (Model 3) and Model 2, 
Iteration 1 (Generation-only).  Again, the investment is well below the co-optimized model level.  
This does not imply that full (simultaneous) co-optimization always yields more transmission 
investment—indeed, it is possible to contrive situations where it would not—but there appears to 
be a tendency for this to be the case. 

 
Table 4-33.  Transmission and generation addition expenditures with operations 

Modeled Case 

Present Worth ($ Billion) 

Decisions 2010-2020b Decisions 2020-2030 Decisions 
2030-2060c 

Transmission 
Investment 

Generation 
Investment 

Transmission 
Investment 

Generation 
Investment 

Generation 
Operations 

Generation 
Operations 

Transmission 
First, using 
average gen 

scenarioa 

49.60 534.47 35.75 426.91 237.31 450.05 

Iteration 2 of 
Model 2 19.46 521.99 34.87 470.17 265.99 453.35 

Iteration 4 of 
Model 2 25.88 531.56 45.05 410.93 252.78 485.70 

Model 3 Co-
optimized 

Model 
72.90 546.96 43.56 383.65 213.85 418.48 

a. Generation investment scenario defined as average of gen investments from Model 2 (Iteration 1, 
equivalent to generation-only) and Model 3 

b. Operations in 2010-2020 not simulated because they are assumed to be unchanged by 2010-2020 
investment, which is in place in 2020.  

c. Investments in 2030-2060 not simulated.  Investments from 2010-2030 are assumed to be in place (except 
for retirements) for 2030-2060 retirements. 

Since the optimal co-optimization case (Model 3) has the highest total transmission cost, all 
improvement over the suboptimal iterated Model 2 must come from more efficient investment 
and operation of generation. Comparing the individual cost components of iteration 2 of Model 2 
to Model 3 (Table 4-33) shows that Model 3 yields a $150 billion reduction in generation costs, 
of which $88 billion is from reduced operations costs and $62 billion from reduced investment. 
Thus, 40% of the generation cost savings would be completely missed by the transmission-only 
iterations of Model 2.  This demonstrates that transmission-only models that consider only fuel 
cost savings and not generation capacity cost savings can miss a large portion of the benefits of 
transmission, and as a result yield suboptimal investment plans. 
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These differences in transmission investment show that the treatment of generation investment 
and siting has a dramatic effect on transmission plans.  In particular, the traditional practice of 
transmission expansion under a fixed scenario of generation investments (transmission-only; 
Model 2, Iteration 2) has given very different levels of investment than full co-optimization 
(Model3).  Thus, these results indicate that anticipating how generation investment might react to 
transmission network plans is a highly important feedback that can drastically change the 
recommendations for transmission investment, and result in important cost savings. 
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5 UNCERTAINTIES IN MODELING 

Long-term planning in any sector usually is subject to significant risks and uncertainties, which 
are particularly important for the power sector because of the long lives of transmission and 
generation assets. On the supply side, short-term risks, such as the intermittent nature of wind 
and solar energy, pose considerable challenges to system operation as electricity supply and 
demand must be balanced at all times to ensure system reliability. As an example of a long-run 
uncertainty, the pressing concerns of global warming, coupled with the lack of federal policy on 
greenhouse gas (GHG) emissions, create huge risks to any capital-intensive investments in 
energy industry. Such risks are intensified by highly volatile fuel prices. 

On the demand side, on top of constantly varying consumption, the increasing penetration of 
demand response and distributed generation resources, plus the potentially widespread adoption 
of plug-in vehicles (PEVs), will make future demand more unpredictable. As a result, long-term 
planning models (or processes) that do not consider uncertainties may provide misleading results 
that could be far from socially optimal solutions once the uncertainties unfold, and such models 
cannot be used to assess system reliability.  

There are two main purposes for considering uncertainties in the modeling/planning process: (a) 
to study the impacts of uncertainties of inputs on system outcomes (such as investments, 
electricity prices, reliability, etc.), as illustrated in Figure 5-1; and (b) to find robust solutions that 
can produce reasonably good outcomes regarding all possible realizations of future uncertainties.  

 

Figure 5-1. Effects of input uncertainties on outputs8

To achieve the two purposes stated above, we need to understand the sources of uncertainties in 
the power sector and their characteristics, which are summarized in Section 5.1. The section will 
also discuss techniques for representing the different types of uncertainties in optimization 
models. Section 5.2 describes methods for solving the resulting stochastic optimization problems, 
and their applications to the co-optimization models discussed in earlier sections. A case study 

 

                                                 
8 Figure source: “Uncertainty Analysis and Optimization: Opportunities and Challenges,” by Gianluca Iaccarino, 
presentation at the Optimization Day Workshop, 2/1/2011, Stanford, CA. 
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will be shown in Section 5.3 to illustrate the impacts of uncertainties on the solutions of co-
optimization models. 

5.1 Uncertainty Categorization and Modeling 

5.1.1 Uncertainty categorization 

Each of the many sources of uncertainties present in the power sector have vastly different 
impacts on individual market participants. We focus on the uncertainties that may significantly 
impact long-term resource planning. While there is no single method to categorize uncertainties, 
our approach groups them by their characteristics, such as by the causes of the uncertainties (e.g., 
market versus nature).  Our categorization is summarized in Table 5-1 below. 

Table 5-1. Uncertainties in the power sector 
Types of 
Uncertainties 

Examples Characteristics 

Market 
uncertainties 

Capital costs 
Fuel costs 
Fuel availability  
Emissions permits costs 

Fundamentals-driven (supply-
demand dynamics) 
Have historical data – can be used to 
derive probability distributions 

Nature-related 
uncertainties 

Water availability (or hydro plants’ outputs) 
Wind speed (or wind plants’ outputs) 
Solar irradiation (or solar plants’ outputs) 

Have extensive historical data 
Can have probability distributions 

Consumption 
uncertainties 

Load  
DR/DGs/Microgrids 
PHEV charging 

Probability distributions of load can 
be obtained through historical data 
Probability distributions of other 
demand resources need to rely on 
simulation 

Individual-
asset 
uncertainties 

Forced outage (units; transmission lines) 
Firm-builds’ availability at the scheduled 
online time 
New built/ Retirements/ Retrofits/ Uprates 

Asset owners have better knowledge 
than system operators  
For new builds, no known 
probability distribution for system 
operators 

Regulatory 
uncertainties 

New reliability standards 
Environmental policies 

Low frequency 
No historical data 
No known distributions 

Other 
uncertainties 

Technology breakthrough 
New discovered resources 
Catastrophic events 

Low frequency 
No historical data 
No known distributions 

5.1.2 Uncertainty modeling 

Uncertainty modeling is the process of using mathematical approaches to represent the random 
variation in data that are observed in real world. The method used to represent an uncertainty 
should be specific to its type, largely depending on their nature and the availability of data. In the 
following we review techniques for modeling each of the categories of uncertainties identified in 
Table 5-1.  
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Market uncertainties are mainly caused by fluctuations in the overall economy and varying 
influences on supply and demand, such as fuel costs and capital costs. Generally, there are two 
approaches to model fluctuating variables related to market conditions. The first approach is 
simply to assume a probability distribution of an uncertain variable, such as fuel costs or capital 
costs. The specific distribution might be selected as that which best fits a sample of historical 
data. Once a distribution is chosen, Monte Carlo simulation 9

In addition, such an approach ignores temporal linkages among random variables. For example, 
even though historical data may suggest a variation (standard deviation) of natural gas price to be 
80%, the variation 

 can be employed to generate 
random data to be used as input parameters in an optimization model, for instance to define a set 
of load or wind production realizations to be considered in the operations part of the model.  

While this approach is simple to implement, it is limited as it cannot be used for forecasting. 
Forecasting using this approach would be inappropriate since it would be assuming that “the 
future is in the past,” and the probability distribution selected would not reflect fundamental 
changes in markets that would make the future deviate from past trends. Also, extreme, but rare, 
events not observed in the historical data are not likely to be captured using this approach.  

conditional on what we know today would be much less – e.g., given that 
today’s natural gas price is $4/MMBTU, the variation of tomorrow’s price would be much 
smaller than 80%. A more sophisticated simulation-based approach is to model the evolution of a 
random variable over time (such as fuel prices) as a stochastic process.10

The idea behind such a model is simple. Suppose that crude oil price has jumped from $50/barrel 
(Pt) to $150/barrel (Pt+1) in a short period of time, due to either an unexpected events or 
speculation. It might be expected that the price would eventually revert to its long-run 
equilibrium level (P*), reflecting the marginal production costs of crude oil. Figure 5-2 shows a 
comparison between a stochastic process (left figure) where the intertemporal linkage of the 

 One particularly useful 
stochastic method is the mean-reverting process, as given below.   

Pt+1 – Pt = α(P* - Pt) + σ εt, 

Here, Pt and Pt+1 represent the price of a commodity at time period t and t+1, respectively. P* is 
an input representing a long-run equilibrium of the commodity price. α is the mean-reverting 
factor, indicating how quickly the random process will return to its mean; σ is the volatility 
(standard deviation) of the commodity price (P), and εt  is a random variable (such as a normal 
random variable with mean 0 and standard deviation 1). 

                                                 
9 Monte Carlo simulation, in non-technical language, can be understood as a black box with the assumed probability 
distribution’s parameters as the input, and with a series of random numbers following the specified distribution as 
the outputs for each simulation run.  

10 Simply put, a stochastic process is a mathematical model to depict the changes of a random variable over time.  
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random variable is ignored (more specifically and technically, a geometric Brownian motion 
process), and a mean-reverting process (right figure). Since fuel prices are fundamentally 
determined by the supply-demand dynamics and marginal production costs, any short-term 
extreme variations tend to dissipate quickly. Hence it is generally believed that mean-reverting 
processes are good models to capture the randomness of commodity prices and so they have 
been widely used in the energy sector for asset valuation and risk management [15,28,38].  

 

 
Figure 5-2. Comparison between a geometric Brownian motion (left) and a mean-reverting 

process (right) 
 
The second approach for modeling random variables is the econometric method. With this 
approach, there are two categories of models: time series models and structural models.  Both of 
are forecasting models, but are based upon different forecasting philosophy. To forecast future 
realizations of a random variable changing over time, time series models only rely on historical 
data. A simple form of a time series model is as follows.   

Pt = β1Pt-1 +… + βpPt-p + εt, 

Again, Pt represents the value of the random variable of interest at time t. The β’s are coefficients 
estimated from historical data, and εt is a random error term. Such a model indicates that the 
random variable Pt (e.g., natural gas or crude oil price at time t) can be inferred from the 
information contained in the observed data up to p periods back. Such a model is called an 
autoregressive process with order p, or AR(p). Another type of model explores the relationship 
between the random shocks (εt, εt-1, … εt-q) with the random variable Pt, is the moving average 
model (or MA(q)). The AR and MA models can be combined into more sophisticated time-series 
models that may produce more accurate forecasts.  
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A general limitation of time-series models is that they are often only good for making short-term 
projections. Structural models, the other category of econometric models, are better suited for 
long-term forecasts. Structural models link the random quantity of interests with a set of 
fundamental variables that are believed to have impacts to the random variable. For example, to 
forecast future crude oil prices, the fundamental variables selected could be a (quantifiable) 
variable that describes the role played by OPEC in the oil market, as well as variables that 
represent the current and future physical oil availability [33]. For forecasting peak electricity 
demand, the fundamental variables may include overall economic conditions, weather, electricity 
and natural gas prices, and population growth. The parameters associated with the fundamental 
variables can be estimated with historical data. Once the parameters are obtained, the structural 
model can then be used to forecast future values (or to generate random samples to be fed into an 
optimization model). 
 
While this approach is easy to understand and implement (given data availability), it requires 
significant experience with modeling and data processing to produce useful models. This is 
because selecting the right fundamental variables requires sound knowledge of the underlying 
drivers of the quantities of interests, and the observed data are usually noisy and it may not be 
possible to use them directly to estimate parameters.  
 
For forecasting electricity demand (or generating random samples), all of the previously-
described approaches are applicable. For example, a time-series model is used for projecting 
hourly load in an electric utility’s portfolio optimization problem [117]. A structural model is the 
basis for ISO-New England’s forecasting of future peak demand [61]. While methodologies for 
demand forecasting (and random demand sampling) are well-established, emerging resources on 
the customer side of the meter, including demand response, distributed generation (DG), 
microgrids, and plug-in electric vehicles (PEVs), pose new challenges to the traditional 
approaches.  
 
The key challenge is that the information about the new resources is not contained in historical 
data. If DG and microgrids are dispatchable by the grid operators, this challenge could be 
overcome by treating them as generation resources. Although this could become a reality in a 
smart-grid world, existing technological and institutional barriers prevent most distributed 
resources from being dispatchable. Another method to address the challenge of incorporating 
emergent technologies is to rely on agent-based simulation. Under this approach, computer 
programs are trained to behave like PEV owners or entities that manage DG or microgrids. The 
net electricity demand directly related to an individual agent’s PEVs. and distributed resources 
can be obtained through a simulation model and then aggregated. Such an approach has been 
employed in [58] to study the impacts California’s retail rate structure on PEV adoptions and in 
[145] to study the effects of PEV charging on wholesale electricity prices.  
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For weather-related uncertainties, such as wind speed and solar irradiance, there are three 
approaches for uncertainty modeling; Monte Carlo simulation, time series analysis, and 
numerical weather prediction models. The Monte Carlo approach simply samples from an 
assumed or fitted distribution for the variables of interest (such as wind speed, or more directly, 
the energy output from a wind power plant). As mentioned previously, it is not a forecasting tool, 
and the distribution is likely to be obtained through analysis of historical data.  The time series 
approach is similar to the modeling and forecasting of fuel costs and load uncertainty described 
above.  It is suited for more aggregate and long-term forecasts of weather-related quantities, such 
as the monthly average wind speed over a multiple-year horizon. Finally, numerical weather 
prediction (NWP) models combine mathematical models of the atmosphere and oceans, with the 
current weather conditions used as “boundary conditions” to predict future weather. Due to the 
complexity of the underlying methods and the high computational burden, NWP is best suited 
for short-term (e.g., less than a week) forecasts. While such approach may not be suitable for 
long-term planning models, it is very useful for short-term unit commitment or dispatch 
modeling involving a large amount of variable energy resources. For co-optimization models that 
can handle more detailed production modeling of a power grid, both the time series and the NWP 
approach can be useful for understanding weather-related uncertainty and informing the choice 
of loads and wind conditions to include in the model.  
 
From power system planners’ perspective, there are risks associated with the unknown status of 
individual assets, such as forced outages of existing assets, and delays in the construction of new 
power plants. All power system operators account for the potential impacts of unavailability of 
certain important generation or transmission assets through N-k contingency analysis. This 
approach ensures that a system remains operable after losing all possible combinations of k of 
the selected generation units and transmission lines. However,  minimizing operation costs of a 
power system subject to system reliability requirements (such as the requirement to withstand a 
N-k contingency) is computationally intensive even for short-term analysis, and it has yet to be 
extended to long-term power system planning. The best practical approach may be to first 
generate an initial investment plan using a co-optimization model followed by an N-k 
contingency analysis on the planned system that can inform adjustments of the plan. For other 
individual asset-related uncertainties for which historical data is lacking, such as future project 
uncertainties (delayed or canceled construction), it can be best to handle these through  stochastic 
optimization (to be introduced in the next section) rather than sampling the uncertainties through 
an assumed probability distribution (like the Monte Carlo approach).  
 
Different categories of longer-run uncertainties such as regulations or technological 
breakthroughs, despite having different origins, can be treated in a similar manner. These 
uncertainties cannot be predicted using historical data, and are not daily or even yearly events. In 
addition, such uncertainties usually have only a few possible realizations. For example, for 
federal greenhouse-gas regulation, there may be three basic possible regulatory outcomes over 
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the next several decades – no regulation, carbon tax, or cap-and-trade. For such uncertainties, the 
widely used scenario-based analysis approach (namely, the “what-if” type of analysis) is an 
option for analyzing the potential impacts of low-frequency events on the power sector. However, 
representing the actual timing of future events related to policy or technological breakthrough 
remains a challenge in long-term planning models, and requires expert judgment. More 
sophisticated approaches to handle such uncertainties, including stochastic programming and 
robust optimization, are introduced in the following section. 

5.2 Optimization under Uncertainties and Applications to Co-Optimization 

The previous section discusses how to model uncertainties that are commonly faced in a long-
term planning process. Such representations need to be incorporated into an optimization model 
in order to create useful decision-making tools. There exist several approaches for performing 
optimization under uncertainty, ranging from the intuitive and simple scenario-based analysis, to 
more complex mathematical modeling and solution methods. This section will provide an 
overview of such approaches.  

In a deterministic optimization model, all input data are known to the modeler for the model to 
be solved to optimality. When the input data exhibit significant uncertainty (such as forecasted 
data), a deterministic optimization model with a fixed set of input data (such as using the 
expected value of the forecasts) is likely to recommend a solution that is actually suboptimal or 
even infeasible when the uncertainty unfolds. This would pose significant challenges particularly 
to power system planning as infeasible resource planning solutions could jeopardize system 
reliability. Hence, it is important for resource planners to explicitly consider the impacts of 
uncertainties on the quality and robustness of the solutions produced by an optimization-based 
planning model.  

The research field of optimization under uncertainty has advanced significantly in both theory 
and computational capability over the past two decades. The main approaches include scenario-
based analysis, stochastic programming, robust optimization, and dynamic programming.  

5.2.1 Scenario analysis 

Scenario-based analysis, also known as what-if analysis or the wait-and-see approach, has been 
widely used in practice. In this approach, inputs that are unknown at the time of preforming the 
analysis, such as future fuel and capital costs, renewable resource outputs, forced outages, are 
generated by using Monte Carlo simulation (or even simpler, based on expert judgment). Each 
series of simulated (or manually selected) input data consists of a scenario, and for each scenario 
a deterministic optimization model is solved. The particular model will then be re-solved 
multiple times, once for each of the scenarios simulated (or provided). Such an approach can be 
easily implemented in the co-optimization models discussed in the earlier sections. While the 
biggest advantage of a scenario-based analysis is its simplicity, both conceptually and 
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computationally, a major drawback is that it does not provide a single set of implementable 
investment recommendations for decision-makers. Instead, there is a deterministically optimal 
solution for each scenario, and solutions for different scenarios are likely to contradict each other. 
For example, the optimal near-term resource expansion corresponding to a high-fuel-cost, high-
demand growth scenario is likely to be very different than that from a low-fuel-cost, low-
demand-growth scenario.  

Scenario analysis does not provide an obvious mechanism to reconcile such disparate solutions.  
Heuristics, which are approximate “rules-of-thumb”, can be used – for instance, build any line 
that is recommended for near-term construction in a majority of the scenarios.  However, such 
heuristics will not minimize average cost over the scenarios, and may in fact perform worse than 
single-scenario solutions.  For instance, this occurred in a hypothetical co-optimization problem 
under uncertainty for the WECC region [90], in which the very best lines (in terms of average 
cost) were not chosen by any scenario, and furthermore the heuristic had even higher average 
costs than any of the scenario solutions. That being said, scenario analysis remains a viable 
approach to gain insights on the impacts of those low-frequency/no-historical-data events on 
system cost and reliability, as discussed in the previous subsection.  

To overcome this drawback of scenario-based analysis, while maintaining its simplicity, one 
option is to create a number of scenarios and develop plans that perform acceptably in all 
scenarios. Recent research has formalized this approach in order to explicitly design for planning 
flexibility, whereby core costs (investment only) and adaptation costs (investment and 
production costs of adapting from the core to each scenario) are simultaneously minimized, as 
illustrated in Figure 5-2. 

 
 Figure 5-2. Illustration of flexibility design [87] 



 143 

A simplified problem statement that implements this flexibility-based design process is  

Minimize:  CoreCosts(xf) + β[ Σi AdaptationCost(Δxi)] 

Subject to:  Constraints for scenario i = 1,…N: gi(xf + Δxi) ≤ bi 

where 

• xf are the core investments, to be used by all scenarios i,  

• Δxi are the additional investments needed to adapt to scenario i, and 

• β weights the solution towards core investments (large β) or towards adaptation (small β).  

This approach was implemented for a 40-year multi-period generation planning problem to 
identify generation investment in a five-region representation of the US for a number of selected 
futures. Results, shown in Figure 5-3, indicate that in year 2049 (a) wind, nuclear, and natural 
gas are the technologies of choice when designing for planning flexibility; and (b) the core 
investment cost increases while adaptation cost decreases as β increases from 0.2 to 1.0. The 
investment schedule over the 40-year period is shown in Figure 5-4 for a choice of β = 0.6. 
Although this example focused only on generation expansion, application of this approach within 
a co-optimization framework is possible and currently under development. 

 

  
Figure 5-3. Effect of β upon core investment, adaptation costs, and generation capacity portfolio  



 144 

 
Figure 5-4. Capacity investments for β = 0.6 

5.2.2 Stochastic programming 

To further enhance the usefulness of optimization models with input uncertainties, along with the 
quality of their solutions, stochastic programming models (or more specifically, here-and-now 
type of models) and algorithms have been developed. The simplest form of such models is the 
two-stage stochastic problem with recourse, in which decisions are separated into two groups – 
those that need to be made before uncertainty unfolds (such as investment decisions), and those 
that can be adjusted once uncertainty is realized (such as unit commitment and dispatch decisions 
to be made after capital and fuel costs become certain). The first group of decisions are made in 
the first stage in the two-stage model, while the second group of decisions, also known as 
recourse decisions, are made in the second stage. The general formulation of the two-stage model 
in a power system’s resource-planning context is as follows.  

Minimize the discounted sum of {future investment costs + sum of probability of each scenario 
of the future uncertainty × operating costs under each scenario} 

Subject to: 

 First-stage constraints: 

e.g., Resource adequacy constraints: sum of unforced capacities ≥ peak demand × 
(1 + reserve margin requirement)  

Linkage between first-stage and second-stage constraints: 

e.g., Capacity constraints: Unit energy production (s) < Unit capacity for each 
generating unit, for all scenarios s 

By solving such a model, the (first-stage) solutions will provide decision-makers a uniform set of 
actions to implement (such as generation and transmission expansion decisions). In addition, 

Second-stage constraints (for all scenarios s): 

e.g., Supply-demand balancing constraints: Total energy production of all units 
(s) = Demand (s) 
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when the model makes first-stage decisions, it will ensure the feasibility of first-stage solutions 
under the second-stage constraints for each and every scenario. For example, consider the 
supply-demand balancing constraint in an economic dispatch problem (the second-stage 
problem) in which the generation and transmission capacity expansion decisions are already 
made (in the first stage). While future demand and the output of renewable resources are 
uncertain, the first stage decisions will ensure that there is sufficient generation and network 
capacity (new built plus existing) to meet the demand and need for network flexibility under all 
possible scenarios. This is fundamentally different than the scenario-based analysis (the wait-
and-see approach) where a set of capacity expansion solutions will only be guaranteed to be 
feasible for the corresponding scenario (e.g., high gas price, high demand growth) and may not 
be feasible under other scenarios.  

A natural extension of the two-stage stochastic programming approach is to multi-stage 
stochastic programming, which can be understood as a repetition of the two-stage models with 
multiple decision stages or “epochs.” Since resource planning in the power sector usually covers 
a long time horizon, with investment and retirement decisions made at multiple time periods, a 
multi-stage stochastic programming model would appear to be a more fitting approach than a 
two-stage model. However, it has been shown that in general, a power sector resource-planning 
model formulated as a multi-stage stochastic programming model is equivalent to a two-stage 
stochastic programming model [123]. Taking advantage of this result drastically reduces the 
computational burden of solving stochastic resource-planning models because a large-scale, 
multi-stage stochastic model is computationally prohibitive to solve.  

Two-stage stochastic programming techniques have been used in co-optimization models, as 
documented in [90,142]. While this approach provides better decision-support than scenario-
based approaches, it faces two major challenges. First, even though two-stage stochastic 
problems are computationally simpler than multi-stage problems, and have been extensively 
studied over several decades, they remain computationally intensive for large-scale problems 
coupled with a large number of scenarios. 11

                                                 
11 For example, consider a two-stage stochastic resource-planning model with the second-stage problem being the 
economic dispatch problem. Assume that without considering uncertainty, the dispatch problem has 1,000 variables 
(such as dispatching from 1,000 generation units). Further assume that there are only two sources of uncertainty, 
demand and wind output, each with 10 possible realizations. Then there are combined 10 x 10 = 100 scenarios, and 
the total number of second-stage variables will be 1,000 x 100 = 100,000. In this example we only consider the 
demand and wind output at a single location. When a transmission network is considered, the number of scenarios 
(and hence the number of second-stage variables) can quickly become too large for even the most advanced 
computers to solve the resulting two-stage problem directly.  

 To overcome computational difficulties, 
sophisticated algorithms have been developed, including scenario reduction methods [29], 
decomposition-based approaches [112], and stochastic sampling [67]. Some algorithms have 
been developed into commercial-grade solvers and are linked to a modeling interface package, 
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such as GAMS, AIMMS, or AMPL. Through the interface package, users can provide input data 
(including the scenarios generated by Monte Carlos simulation or other uncertainty modeling 
methods), and the interface converts the inputs into a mathematical programming problem. 
Despite the continuing development in modeling systems and solvers, the sizes of stochastic 
programming problems that can be solved are unsatisfactory relative the sizes that result from 
considering a realistic (say, several dozen) number of scenarios for a large region over multiple 
decision stages.  In addition, users of stochastic programming modelers need to be more 
sophisticated than users of deterministic models. As a result, there are relatively few real-world 
resource planning models that utilize stochastic programming. However, as software and 
computational capabilities improve, we anticipate that this will change.  

The second challenge associated with a stochastic programming approach is that it may yield 
overly conservative solutions. As discussed above, in the context of resource planning, to ensure 
feasibility of second-stage constraints (such as supply-demand balancing constraints in an 
economic dispatch problem) under all scenarios, redundant capacities of generation and 
transmission assets may need to be built. However, certain extreme scenarios, such as extreme 
weather conditions coupled with the forced outage of several large generation units, might only 
occur with extremely small probabilities. The added investment costs to maintain system 
reliability under such rare events may not be justifiable.  

There are several approaches to deal with such issues.  One is to make sure that the probabilities 
of such extreme events are not overstated; smaller probabilities effectively discount the cost of 
extreme cases.  However, this can be dangerous, because it is well known from the behavioral 
decision making literature that decision makers tend to underestimate the probability of extreme 
events. 

Another approach is to relax some constraints to the point that they are only required to be 
satisfied with a given probability. Such constraints are called chance constraints. An example 
would be instead of requiring that the supply and demand of electricity are balanced under all 
scenarios, the constraint may be relaxed so that supply has a 99% probability of equaling or 
exceeding load, allowing for a 1% possibility of unserved energy. Such small relaxations may 
significantly reduce overall investment costs since it is often the peak demand that requires large 
incremental capital investments. While chance constraints are intuitively easy to understand, and 
can be integrated with system reliability rules (such as the one-day-in-ten-years resource 
adequacy rule), they nonetheless pose significant mathematical challenges. This is so because not 
all random variables have explicit mathematical expressions of their probability distributions. 
Even if explicit probability distribution functions exist, the resulting stochastic programming 
problem often does not possess the required mathematical properties (convexity, in mathematical 
terms) to be easily solved. To overcome the computational difficulty, recently stochastic 
resource-planning models using the concept of Conditional-Value-at-Risk (CVaR) have been 
proposed [150].   
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CVaR was originally developed in the finance literature as a measure of risk. In the context of 
power sector planning, it can be interpreted as the expected value of loss given that a 
contingency event occurs.  For instance, considering just the 1% worst outcomes, their expected 
loss might be $1,000,000.  The loss may be measured in monetary value (such as value of lost 
load) or in terms of energy units (such as unserved energy). Then a chance constraint in a 
stochastic programming model can be replaced by a constraint requiring the CVaR to be less 
than a pre-specified value (referred to as the risk tolerance level). The benefit of such 
reformulation can be traced to the seminal work by Rockafellar and Uryasev [109], where they 
show that the CVaR constraint can be equivalently replaced by a set of linear constraints. As a 
result, a stochastic resource-planning model with CVaR constraints should be applicable to much 
larger-scale planning models than the chance-constrained formulation. At the same time, the 
CVaR formulation gives the modeler flexibility to adjust the trade-off between investment costs 
and system reliability by changing the specified risk tolerance level (similar to adjusting the 
probability requirement in a chance constraint). The application of such a modeling and 
computational framework to real-world-sized co-optimization problems is an active area of 
research.  

5.2.3 Robust optimization 

In addition to the above-mentioned challenges faced by stochastic programming, that framework 
may have further limitations from a decision-making perspective. Since that method mainly 
focuses on optimizing the expected value (i.e., the probability-weighted average) of the objective 
function (such as minimizing the expected investment cost over a certain period), it ignores the 
effect of decision-maker’s attitude towards taking risks.  Stakeholders and managers may be very 
averse to large negative outcomes, implicitly giving them more weight than they would in a 
expected value calculation.  For example, the probability distribution of lost load or financial 
costs associated with catastrophic events, such as hurricanes, earthquakes, terrorist attacks, is 
usually very asymmetric (compared to a symmetric, bell-shaped distribution curve), reflecting 
the fact that such events are possible even if they happen with very low probability.12

                                                 
12 Such probability distributions are referred to as fat-tailed distributions.  

 In the 
resource-planning context, decision-makers may want to limit the damages in a catastrophic 
event, as well as lowering the average investment cost over all possible future scenarios. This 
leads to a multi-objective optimization problem, and its objective function can be written as 
follows.  

Minimize (over a finite period of time)  

w1 × Expected value of cost + w2 ×  Deviation from the expected value (e.g., variance) + w3 
× penalty of infeasibility under all scenarios   
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The wi’s (i = 1, 2, 3) represent the weights that a decision maker puts on the three quantities that 
he or she wishes to minimize – the expected cost, the variance from the expected value and the 
infeasibility that may occur under certain scenarios. The last item in the objective function is to 
accommodate situations where ensuring that the system remains feasible is either impossible or 
prohibitively expensive. For example, guaranteeing that an electrical grid is able to serve all 
customers even under the extreme events such as Hurricane Katrina or Sandy is simply 
unachievable. Hence, we can relax the problem and allow infeasibility to happen under some 
scenarios, but will assign a penalty factor (w3) to infeasibility in such cases.  

This is sometimes called robust optimization (RO), and has been implemented for the resource 
planning in the electricity sector [84].  (RO is a term also applied to a related method, described 
below, which can lead to confusion.) While the solutions of the RO approach may be shown to 
be more robust13

There are recent developments in the general area of robust optimization that focus on 
optimization under uncertainties with only the ranges of the uncertainties (as opposed to their 
probability distributions) specified. We refer to these developments as the general RO approach 
(as opposed to the more specific RO approach described above), and it can find a set of solutions 
that will remain optimal as long as the realizations of uncertainties fall within the specified range.  
No probabilities need to be specified for scenarios within the range, which is seen by some users 
as an advantage. This approach has been applied to short-term unit commitment in power system 
operations [63]. This approach is attractive from the decision-maker’s perspective, as it can 
provide a solution that performs well under all scenarios, even in the worst cases (given that the 
correct bounds on uncertain parameters are given, which are often arbitrary but easier for 

 than the scenario-based analysis or the stochastic programming approach, there 
are limitations with such an approach as well. First and foremost is the selection of the weights 
on the different objectives, which  can be somewhat arbitrary. Different weights may produce 
drastically different solutions, and it may be difficult for the decision-maker to justify one 
particular set of weights over another. As a remedy, the RO approach may be used to plot the 
trade-off curves between costs and reliability of a system (as measured by the total infeasibility 
of the system) by gradually shifting the weight from cost to reliability. While this approach may 
not provide specific strategies for a decision maker to execute, it can provide insights on the best 
level of reliability that the system could achieve with a certain level of system cost.   

The second limitation of the RO approach is that with the added terms in the objective function, 
the variance term and the infeasibility measurement, the resulting function is in general not linear 
(or not even convex, which is a key property for efficient computing of solutions). As a result, 
the RO approach faces significant computational challenges with real-world-sized problems.  

                                                 
13 Robustness here means that a solution is near optimal regardless the actual realizations of the uncertainties.  
Stochastic programming minimizes expected cost over all the scenarios, but the solution may still perform poorly 
under some low probability scenarios.  RO can sometimes avoid that outcome.   
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decision makers than specifying probability distributions). However, the robustness of the 
solutions usually comes with the added cost of maintaining additional capacity redundancy in the 
system. In addition, the general RO approach is computationally intensive as well and is not 
amenable for large-scale computation.  

5.2.4 Dynamic programming 

Dynamic programming (DP) is a mathematical tool to aid sequential decision-making over 
multiple time periods. It attempts to break a complex, multi-stage decision-making problem into 
a sequential of simpler problems, and solve them step-by-step, moving backwards from the last 
time period to the beginning. This process (known as the backward induction approach) in theory 
ensures optimality of the solutions over all stages. DP models have state variables to represent 
the current status of a system, such as the current demand level, weather conditions, capacity mix 
and level, the current unit commitment status, or the energy stored in a storage resource.  

Uncertainties can be readily incorporated into a DP model through the transitioning of state 
variables. For example, the transition of the current system’s demand level to the next decision 
stage (e.g., next hour, next day, next year, etc.) may follow a probability distribution. Such 
models are referred to as stochastic dynamic programming.  

Although DP is a classic decision-making tool, it is usually best suited for the situations with 
only a few decision choices to make and a few sources of uncertainties, but with many time steps. 
The computational burden of the backward induction method for solving a DP increases 
exponentially with more decision variables and states variables being added. As a result, the DP 
framework in general is not suitable for long-term resource-planning problems, as such problems 
typically have a large number of decision variables and multiple sources of uncertainties. 

Nonetheless, recent developments in designing approximation-based algorithms to solve DP 
problems (termed as Approximate Dynamic Programming, or ADP) have significantly expanded 
the problem sizes that the original DP framework can handle, and such approaches have been 
applied to power systems’ resource planning [145, 105]. While the ADP approach is designed to 
incorporate multiple sources of uncertainties and is amenable to large-scale computation, the 
transmission networks in those papers are still represented as transshipment (“pipe-and-bubble”) 
networks, and the modeled power plants are highly aggregated (by types and locations). Whether 
this approach could be applied to co-optimization with the needed level of disaggregation and 
detailed modeling on both transmission networks and power plants is currently under active 
research.  

5.3 Co-optimization under Uncertainties – A Case Study using GENTEP 

In this section, we provide a case study to compare the modeling results without and with 
explicit consideration of uncertainties, in this case outages of generation and transmission 
equipment. GENTEP, which is described elsewhere in this report, is used for the long-term co-
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optimization of generation and transmission planning by explicitly addressing demand growth 
uncertainties and random outages of generating units and transmission lines. The resource-
planning problem considers multiple decades and numerous variables, and so requires a proper 
reduction in the number of scenarios in order to keep the problem manageable. Monte Carlo 
simulation and an approach called scenario reduction are applied to represent the uncertainties in 
long-term resource planning.14

5.3.1 GENTEP Planning Algorithm 

 The range of energy and perhaps capacity price signals calculated 
in the various scenarios reflect the modeling of uncertainties and provide investment signals for 
planning decisions. The GENTEP iterative scheme between the ISO and participants may not 
converge in every case. Accordingly, the user may stop the coordination process and make a 
final decision based on pre-specified rules or judgment. 

This section presents details on the algorithm used by GENTEP to solve the planning problem.  
Unless the reader is interested in these details, she or he can skip to the next subsection where the 
case study and results are described.  

The GENTEP planning process is decomposed into three problems as shown in Figure 5-5 
including the planning problem of GENCOs and TRANSCOs, the ISO’s transmission reliability 
check problem, and the ISO’s optimal operation problem. The capacity signal loop provides 
capacity signals to participants and the price signal loop provides price signals based on the 
market clearing process. The proposed formulation also considers uncertainties in the ISO’s 
reliability check problem and optimal operation problem.  

The solution steps according to Figure 5-5 for the proposed planning problem are given as 
follows: 

Step 1: Monte Carlo simulation generates a set of scenarios assuming uncertainties of generation 
units, transmission lines and future load growth. Scenarios are assumed to have equal 
probabilities, and here are sampled from a set of independent and identically distributed random 
variables. Alternatively, users can enter specific probabilities for the given scenarios. Then 
scenario reduction is executed. It is assumed that the outage characteristics and capacity of all 
candidate units and lines are identified by the ISO.   

Step 2: Individual GENCOs’ generation resource planning problems and TRANSCOs’ merchant 
transmission resource planning problem are solved based on initially forecasted LMPs and 
FMPs. LMP is the shadow price or Lagrangian multiplier associated with delivering a marginal 
unit of energy at a bus. FMP is the shadow price associated with a flowgate.  FMP is equivalent 

                                                 
14 Scenario reduction involves generating many scenarios (e.g., load growth over the next 20 years), and then 
selecting a small subset that preserve the range of variation of the original set of scenarios so that the resulting 
solution is not appreciably distorted by omitting most of the scenarios [129]. 
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to the change in the social benefit or social cost of transactions settled through the spot market 
when the transmission constraint is relaxed by an increment.  Each GENCO and TRANSCO 
maximizes its profit according to the expected LMPs and FMPs.  

Step 3: Benders Loop – The Benders master problem is represented by profit maximization 
problems for GENCOs and TRANSCOs. The ISO’s reliability check problem is the Benders 
subproblem. The ISO calculates the nodal power balance mismatch at each scenario. Then, the 
expected nodal power balance mismatch is calculated and compared with the given reliability 
criterion. Once a reliability constraint violation is detected, a corresponding Benders cut is 
generated. The Lagrangian relaxation will relax complicated and linking constraints into the 
objective function of planning problem and obtain locational capacity signals. 

Step 4: Capacity Signal (LR) Loop – A method called Lagrangian relaxation is applied to relax 
Benders cuts (coupling constraints) when solving the individual planning problem. Depending on 
the proposed Benders cuts, the Lagrangian multipliers are updated and capacity signals are 
formed by the ISO and fed back to individual GENCOs and TRANSCOs. Capacity signals 
provide incentives for generation and transmission capacity expansion. Among iterative planning 
solutions, the one with the minimum capacity signal is selected by the ISO as the best solution. 
The resource planning problem will be declared infeasible if no feasible solution is found.  

Step 5: Price Signal Loop– The ISO solves the optimal operation problem and calculates LMPs 
and FMPs for each scenarios deterministically. The optimal operation is a linear programming 
problem with the objective of maximizing the social surplus. After completing the calculation of 
LMPs and FMPs for every scenario, the average or expected LMPs and FMPs are calculated and 
fed back to GENCOs and TRANSCOs iteratively until the convergence criterion is met. The ISO 
would compensate GENCOs and TRANSCOs based on capacity signals for maintaining the 
system reliability. GENCOs obtain their revenues from capacity and energy payments and 
TRANSCOs obtain their revenues from capacity and flowgate payments. The energy payments 
for GENCOs are simulated by LMPs, which are calculated by the ISO and introduced into 
GENCOs’ capacity investment decisions. The FMP is also calculated and provided by the ISO to 
facilitate TRANSCOs’ capacity investment decisions.  
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Figure 5-5. GENTEP for the Stochastic Co-Optimization of Generation and Transmission 
Planning 

5.3.3 Case Studies 

Here we examine how explicit consideration of random load growth as well as forced outages of 
generation and transmission equipment can affect the solutions of a co-optimization model.  We 
compare deterministic solutions (no outages) with stochastic ones in which we assume that 
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outages of different components of the system are statistically independent with each occurring 
with a stated probability (“forced outage rate”).   

A six-bus system shown in Figure 5-6 is used to analyze the effectiveness of the GENTEP model 
for solving the stochastic planning problem. The six-bus case study is applied to a 10-year 
planning horizon to show the effectiveness of the proposed model. The load forecasts over the 
planning horizon, generators data, and transmission lines data and are shown in Tables 5-2 – 5-6.  
Although the forced outage rates are small (at most, a handful of percent) as is the random 
component of load growth, our calculations show that they are large enough to affect the optimal 
plans.   

The tables show that GENCO A has three existing units and five candidate units, and GENCO B 
has one existing units and eight candidate units. Candidate generating units differ in locations, 
operation costs, investment costs and forced outage rates. Hence, these factors would be 
anticipated to affect the planning decisions concerning where and when to install new capacity. 
There are seven candidate transmission lines listed in Table 5-6. The loads are located at buses 3, 
4 and 5. The average peak load and energy demand growth rate is 5% per year. The random 
component in peak load and energy demand growth rate has a normal distribution with zero 
mean and 0.01 standard deviation. Generating units submit their cost of operation as bids and the 
flowgate bid is the levelized investment cost with a 10% capacity factor. The discount rate is 5%, 
which is used in the calculation of net present value and capacity payment for new generating 
units and transmission lines. The stopping criterion for the iterative procedure (called ) is 5%. 
A planning year is divided into 4 load blocks by grouping similar loads. The target unserved 
energy (LOEP) is 5% for all load blocks. 
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Figure 5-6. One-line diagram of six-bus system 
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Table 5-2. Yearly peak load and energy demand 
Year 1 2 3 4 5 

Peak Load (MW) 25.00 26.25 27.56 28.94 30.39 
Energy(GWh) 179.8 188.7 198.2 208.1 218.5 

Year 6 7 8 9 10 
Peak Load (MW) 31.91 33.50 35.18 36.94 38.78 

Energy(GWh) 229.4 240.9 252.9 265.6 278.9 
 

Table 5-3. Load distribution by bus 
Bus 1 2 3 4 5 6 

Distribution 0.0 0.0 0.4 0.3 0.3 0.0 

 

Table 5-4. Load blocks in base year 
Subperiod  1 2 3 4 

Duration (%) 1 29 50 20 
Load (MW) 25 23 20 18 

 

Table 5-5. Generation unit data 
Unit Bus Capacity 

(MW) 
Forced 
Outage 

Rate (FOR) 
(%) 

Operating cost 
($/MWh) 

Investment Cost  
($/kW/year) 

AE1 2 10 3 25 Existing unit 
AE2 3 5 3 35 Existing unit 
AE3 6 5 3 37 Existing unit 
A1 1 10 3 22 100 
A2 1 7 3 30 80 
A3 2 5 5 35 60 
A4 2 3 3 40 30 
A5 4 3 5 40 40 

BE1 1 10 3 25 Existing unit 
B1 3 3 2 40 45 
B2 3 2 1 55 20 
B3 5 5 5 35 70 
B4 5 3 3 40 35 
B5 6 10 3 22 110 
B6 6 8 3 29 85 
B7 6 5 5 35 50 
B8 6 2 1 55 15 
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Table 5-6. Transmission line data 
Line From To Capacity 

(MW) 
Forced 
Outage 

Rate (FOR) 
(%) 

X (p.u) Investment Cost  
($/kW/year) 

TE1 1 2 10 0.1 0.170 Existing line 
TE2 2 3 7 1.0 0.037 Existing line 
TE3 1 4 7 1.0 0.258 Existing line 
TE4 2 4 7 1.0 0.197 Existing line 
TE5 4 5 7 1.0 0.037 Existing line 
TE6 5 6 7 1.0 0.140 Existing line 
TE7 3 6 7 1.0 0.018 Existing line 
T1 1 2 10 0.5 0.170 5 
T2 2 3 7 0.5 0.037 8 
T3 1 4 7 0.5 0.258 12 
T4 2 4 7 0.5 0.197 10 
T5 4 5 7 0.5 0.037 7 
T6 5 6 7 0.5 0.140 5 
T7 3 6 7 0.5 0.018 6 

 

We consider four test cases that are categorized into two deterministic cases (Cases 1 and 3) and 
stochastic cases (Cases 2 and 4). In Cases 1 and 2, generation only planning is considered, so no 
new lines are allowed. Cases 3 and 4 deal with the coordinated transmission and generation 
planning (co-optimization).  

Tables 5-7 and 5-8 show the installation year of candidate generating units and transmission lines 
respectively. First, we consider the generation-only models.  In Case 1 (the deterministic gen-
only case), B2 and B8 with small capacity and low investment costs are installed in earlier years 
and the 3 MW units, A5, B1, and B4, are installed in later years. The installation of low 
investment units could minimize the social cost. When uncertainties are considered in Case 2, the 
increase in system capacity resulting from a change in the installation schedule will make it 
possible to cope with possible outages, i.e., to satisfy the reliability target. As expected in Case 2, 
generating units B2 and B8 are installed earlier compared to Case 1. Also in Case 2, unit B7, 
which has a larger capacity than A5 and has the cheapest investment cost among 5 MW 
candidate units, replaces A5 in year 10.  

Turning to the co-optimization cases, in Case 3 (deterministic co-optimization), transmission 
lines T2 and T6 are installed to relieve the load balance mismatch in year 6. Accordingly, fewer 
generating units are installed in Case 3 as compared with Case 1 (gen-only). Also the installation 
of A5 and B1 is cancelled. Unit A4, which is located far from load, is installed in year 10 when 
the transmission line expansion is considered.  

In the stochastic co-optimization model (Case 4), small and low investment cost units B2 and B8 
are installed in year 1 to prevent possible supply shortages caused by the random outages of units 
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and lines. A5 is added in Case 4 when compared with Case 3. In Case 4, the added generation 
capacity is smaller than that of Case 2 when T2 is installed in year 8. Table 5-9 shows that a 
considerable savings in social cost is achieved by the coordinated planning. The social costs in 
the deterministic cases (Cases 1 and 3, where there is no load growth uncertainty or forced 
outages) are lower than those of Cases 2 and 4 (with load growth and outages). Comparing the 
social costs of cases with and without uncertainties, we learn that social costs increase when 
additional generating units and transmission lines are installed to cope with uncertainty.   

Table 5-7. Candidate Generation Unit Installation Year 
Case A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8 

Case 1 (Deterministic, 
Generation Only) 

0 0 0 0 10 9 6 0 7 0 0 0 4 

Case 2 (Stochastic, 
Generation Only) 

0 0 0 0 0 9 1 0 8 0 0 10 1 

Case 3 (Deterministic, 
Co-optimization) 

0 0 0 10 0 0 7 0 8 0 0 0 4 

Case 4 (Stochastic,  
Co-optimization) 

0 0 0 10 9 0 1 0 8 0 0 0 1 

Table 5-8. Candidate Line Installation Year (Co-optimization Cases Only) 
Case T1 T2 T3 T4 T5 T6 T7 

Case 3 0 6 0 0 0 6 0 
Case 4 0 8 0 0 0 0 0 

Table 5-9. Social Costs in the 6-Bus System (Million$) 
 Case 1 Case 2 Case 3 Case 4 

Social Cost 51.67 51.75 50.83 51.45 

But this is not to say that deterministic planning is better.  If we naively planned for certainty and 
implemented the deterministic plans, but in fact had outages and uncertain load growth, the costs 
of Cases 1 and 3 would instead be higher than 2 and 4.  That is, we would pay a penalty for naïve 
decision making, and a stochastic approach would result in lower expected costs.  This penalty, 
which has been demonstrated in other generation and transmission planning problems [57,142], 
is sometimes called the “value of the stochastic solution” or the “cost of ignoring uncertainty.”   

This stochastic market-based approach could provide signals to investors on the location of new 
generation and transmission facilities and help system planners, regulators, and local authorities 
concur on transmission planning. Numerical results illustrate the ability of the GENTEP model 
to account for uncertainty and to coordinate generation and transmission investment. The results 
above show the effects of system component outages and demand uncertainties on the co-
optimization of generation and transmission capacity expansion schedules and social costs. The 
merit of the stochastic approach is that it can provide more realistic and reliable energy and 
capacity price signals to participants on the long-term capacity expansion.   



 157 

6 INSTITUTIONAL ISSUES 

This section addresses several groups of institutional issues, including confidentiality (Section 
6.1), the pros and cons of having co-optimization models in the public domain (Section 6.2), and 
potential roles of the states (Section 6.3). 

6.1 Confidentiality Concerns 

The electric power system for generating, transferring and delivering electricity is considered a 
critical infrastructure, as it is vital for supporting the economy’s normal operation and people’s 
common life. Generally speaking, any information that could potentially make the infrastructure 
vulnerable is deemed confidential from national security’s perspective. The development of co-
optimization models, while aimed at improving the efficiency of power system planning, should 
not jeopardize the energy system’s security by inadvertently releasing confidential information. 
On the other hand, the success of any model development shall not hinge upon the availability of 
confidential information. This section discusses the existence of confidentiality concerns 
regarding all aspects of co-optimization models, including model formulae, modeling 
assumptions, data and model outputs. 

For what is considered as confidential information in the power sector, North American Electric 
Reliability Corporation (NERC) has a clear set of definitions as follows [98]:   

“Confidential Information means (i) Confidential Business and Market 
Information; (ii) Critical Energy Infrastructure Information; (iii) personnel 
information that identifies or could be used to identify a specific individual, or 
reveals personnel, financial, medical, or other personal information; (iv) work 
papers, including any records produced for or created in the course of an 
evaluation or audit; (v) investigative files, including any records produced for or 
created in the course of an investigation; or (vi) Cyber Security Incident 
Information; provided, that public information developed or acquired by an entity 
shall be excluded from this definition.” 

Based on the above definitions, formulae and assumptions of a co-optimization model are not 
likely to be considered confidential. Such information is indeed widely available in the public 
domain (see, for example, the documentation for NREL’s ReEDS model [124], PIK’s LIMES 
model [45], UC Berkeley’s SWITCH model [34]). The outputs of co-optimization models, as 
long as they do not reveal the system’s vulnerability to the unavailability of certain assets (such 
as a power plant or a transmission line), should not be considered as confidential either. The 
results of all the co-optimization models surveyed in Section 2.3.2 and Appendix II are publicly 
available (see the corresponding citations therein). 
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Instead, the potential concerns for confidentiality lie in the data required for developing and 
running co-optimization models. Before discussing such concerns, it is important to distinguish 
between proprietary and confidential information. Proprietary information refers to the 
information that is exclusively owned by its owner. Such information may or may not be 
confidential in terms of critical infrastructure security. For example, fuel costs projected by data 
vendors, based on their data collection and in-house forecast, are proprietary. However, they are 
not confidential based on NERC’s definition. Based on the data summary provided in Section 3.3 
(Table 3-3), detailed transmission network data are considered as Critical Energy Infrastructure 
Information (CEII). Power plant availability data, as available through NERC’s GADS database, 
are also treated as confidential. 

Confidential data are not unobtainable, as long as the receiving parties are qualified for obtaining 
the data and agree to certain confidentiality agreements. For example, transmission network 
information can be obtained for FERC through filling out the CEII Request Form. Hence, the 
development of co-optimization models should not been hindered by requiring confidential data. 
However, such data cannot be made available in the public domain, raising potential difficulties 
for the public to assess the validity and quality of the model outputs. Such issues are discussed in 
the following subsection.  

6.2 The Pros and Cons of Having Co-Optimization Models in the Public Domain 

The potential benefits of having the co-optimization models in the public domain include, but are 
not limited to the following: 

• increased transparency in resource planning, 

• broader involvement by non-industry stakeholders, 

• assisting investors to make more economically sound decisions, 

• assisting policy makers to design the best public policies, 

• receipt of feedback from model users to support improvement of the models, and 

• contributing to informed discussions and debates among model builders and users. 

However, in addition to the apparent concern of confidentiality, which is addressed above, there 
are other disadvantages of having the co-optimization models in the public domain. Disputes 
concerning modeling inputs and assumptions would almost surely arise; this would ideally lead 
to healthy debate and more transparency, but it could also slow down decision processes and 
obscure—rather than illuminate—the important issues [64]. Misuse of models by third parties 
could also erode confidence in using such models for decision-making (for examples, see [91]). 
In the following, we will provide a detailed assessment of the advantages and disadvantages to 
have the co-optimization models in the public domain based on discussions with practitioners 
and studies of different models. 
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In order to better understand the viewpoints and thoughts of academicians and 
practitioners/Planning Coordinators towards having co-optimization models in the public domain, 
we have held informal discussions with experts in both academia and power industry, including 
coordinators in several utilities and system operators in the Eastern Interconnection. Based on 
these discussions, we have obtained some understanding of the viewpoints of the practitioners 
and the gap between academic modeling and real practice. Pros and cons are largely dependent 
on the standpoint of the viewer. What is viewed as a “pro” by academicians might be a “con” for 
some Planning Coordinators. Below, we review the pros and cons based on the standpoints of a 
number observers, including academicians, independent systems operators, generation 
companies, transmission companies, and public policy makers.  

6.2.1 Discussion and assessment of pros of having co-optimization models in public domain 

The first benefit of having co-optimization models in public domain is that it will increase 
transparency for resource planning from the public side. This is almost unanimously viewed as 
am advantage. When the co-optimization models are from governmental agencies or public 
policy makers, it is very clear that academicians, Planning Coordinators and stakeholders can 
benefit by understanding what and how the government or policy-makers conduct their resource 
planning studies. In addition, people will know the intents and assumptions of the studies. This is 
especially important to Planning Coordinators and market participants such as ISOs/RTOs, 
generation companies, transmission companies, and distribution companies.  

When the co-optimization models are from academicians, the policy makers and Planning 
Coordinators can know what kind of state-of-the-art modeling tools, techniques and 
computational methods are used, and can assess how they might benefit policy making and 
industry planning. Finally, when co-optimization models are from practitioners such as ISO/RTO, 
generation companies, and transmission companies, public information can give the policy 
makers and academicians better understanding of the industry’s assumptions, concerns and 
objectives. This could lead to healthy collaboration among different companies, which would, 
for instance, support the goals of FERC Order 1000. 

Public information and public domain models will certainly lead to broader involvement by non-
industry stakeholders. By non-industry stakeholders, we mainly refer to consumers (the 
demand/load side), environmental groups, and governmental entities (e.g., both state and federal 
governments). Models and results from the policy makers and power industry practitioners will 
certainly interest the consumer groups, who take a keen interest in industry costs and often take 
part in regulatory proceedings on cost recovery. Having co-optimization models in the public 
domain creates an environment that can foster healthy discussion between power industry 
stakeholders and non-industry stakeholders. However, in the short run, better informed consumer 
groups may delay important capacity expansion by the power industry, since the goals of non-
industry stakeholders might not be aligned with the long-term goals of the co-optimization 
process. For governmental entities, having access to co-optimization models used in power 
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industry will enable them to understand the industry more, and improved understanding can (but 
do not necessarily) lead to better policies that are good for the long-run future of the industry and 
society. 

Having co-optimization models in the public domain will also help investors to make more 
financially sound decisions. For example, models and results published by policy makers or their 
consultants are likely to contain many details on policy and its impact on the power industry. To 
practitioners or the investor, these are very important to make decisions that take due account of 
public policies. For instance, many models assume renewable energy (due to increasingly 
stringent environmental regulations or policies) will grow rapidly. Investors clearly received this 
message and hence investments have been much heavier in these areas than those related to 
traditional energy resources such as coal.  

Models and results from Planning Coordinators carry information about the status of the market 
and anticipated trends. However, this information may appear more authoritative than it should, 
if based on expert judgment and not hedged by appropriate acknowledgement of uncertainties. 
This could deliver misleading messages to the market, the implications of which we will discuss 
in the next subsection.  In addition to help investors make better decisions, publicly available co-
optimization models and their data could also improve regulatory decisions, such as certificates 
of convenience and necessity, and assist researchers. Models and results from academicians can, 
in theory, assist planning, regulatory, and public policy processes by giving groups access to 
state of the art modeling tools. However, “research grade” tools are particularly difficult for non-
specialists to master. 

Model builders in turn will receive feedback from model users which will support improvement 
of their models. Model users feedback generally will include concerns, suggestions and questions 
regarding input data, assumptions, modeling techniques, mathematical formulations, 
computational methods, and results. For example, model users might suggest relaxation of some 
restrictive assumptions, or more realistic representations of certain aspects of power systems. For 
instance, some models only take into account static and deterministic information, and then the 
model’s developers are likely to be asked to make the model dynamic and stochastic. Models 
with simplified and aggregated input data will certainly receive comments expressing concerns 
over the model simplification. Feedback received by model builders could make models more 
realistic and robust, and their solutions more decision-relevant and understandable. 

The feedback given to developers of public domain models can help create healthy debate among 
users and builders. Input data, model assumptions and considerations will be in the center of the 
debates because these are key factors that will drive the results. Such discussions could lead to 
enhancing co-optimization models by including more appropriate features and better data. For 
example, it was such debates that lead to the use of mixed integer programming in power 
systems’ unit commitment and the abandonment of the previously popular Lagrangian relaxation 
method [55].  These MIP models are estimated to save hundreds of millions of dollars in 
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dispatch costs [99].  We believe that similar debates will likely lead to healthy improvements in 
the co-optimization models and help improve the efficiency of transmission infrastructure 
planning. Interaction between the model builders and users could be enhanced by using the sort 
of web appliances that are used, for example, by evacuation planning researchers to broaden 
impacts [25, 89]. In these web appliances, the user can upload their own data and see the results. 
But this might lead to confidentiality issues that are discussed in Section 6.1, and briefly in the 
next section. 

6.2.2 Discussion and assessment of cons of having co-optimization models in public domain 

As just discussed, there are many potential benefits to having co-optimization models in the 
public domain. However, public domain models would also have disadvantages, which we detail 
in this subsection.  

Confidentiality is the first concern with public domain models. During our discussions with 
practitioners, especially transmission coordinators, this was a highly salient concern because 
reliability and security is their first priority. To most power industry practitioners, the data inputs 
are under non-disclosure protection. In order to access power system infrastructure data, a FERC 
Critical Energy Infrastructure Information (CEII) agreement needs to be signed. Showing the 
mathematical models and their corresponding results poses less of a concern to industry 
practitioners.  These confidentiality issues are explained in more detail in Section 6.1. We now 
turn to issues other than confidentiality. 

While debate could be able to help improve co-optimization models, it could also potentially 
delay the decision process and obscure important issues. The history of integrated resource 
planning (IRP), which in some jurisdictions like California fell into disfavor because of 
protracted “battle of the models” in adversarial regulatory proceedings, is cautionary in this 
regard [64].  When transmission investments are needed to maintain reliability or to interconnect 
new renewable facilities, delays could pose a big problem. Arguments concerning model 
assumptions could be difficult to resolve quickly since different players in the power market 
could have different concerns, interests, and understandings of the future. For example, 
traditional generation companies may be disinclined to go “the extra mile” on environmental 
protection or renewable investments; they might, for instance, discount the possibility of 
significant federal greenhouse gas legislation. However, environmental groups might favor the 
opposite assumption.  

Whether such disputes are more or less likely to happen in deregulated markets is unclear.  It 
might be argued that such disagreements would be more likely to happen in a restructured 
market such as the PJM market because decision making is diffuse, with no single utility or 
regulator in charge.  However, precisely because vertically integrated utility systems are highly 
regulated, contention among opposing interests could stretch out regulatory proceedings—again, 
the lessons of the IRP era are relevant.  
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Co-optimization models usually involve many types of decision variables and constraints, which 
make them complicated and difficult for stakeholders and even users to understand. For this 
reason, misinterpretation and misuse is a danger, and results could be misleading or essentially 
wrong. Their implementation could hurt the public and the industry. If models are shown to 
misunderstood and misapplied, public and regulatory confidence in co-optimization modeling 
could be sabotaged. In order to prevent this from happening, it would be best to provide 
transparent, comprehensive, and accessible documentation of models and assumptions. Customer 
and user assistance is essential. Incorrect or inappropriate data inputs should be avoided, and 
transparency can help internal and external parties uncover errors. 

Murphy and Shaw [91] have shown how energy modeling in the federal government has been 
evolving since the 1970s and interacting with politics, public policies, and opinions. The 
reactions toward federal models and results ranged “from extreme gratitude to rage.” The 
electrical power system has always been a critical portion of the national energy system and 
economy. With environmental concerns, renewable energy mandates, and increasing 
electrification of the economy, the role of electricity in the economy can only increase, as will 
the scrutiny it will get from policy makers, investors, and the public.  This scrutiny may slow 
down planning for transmission infrastructure, or it may increase pressures for concrete results.  
Public disclosure of information and public domain software may be intentionally misused for 
political reasons, unintentionally misused out of misunderstanding, or (hopefully) support more 
informed public debates and ultimately better decisions. As indicated in [91], models have 
sometimes served to cloud issues but have frequently provided important insights that have 
significantly affected policy outcomes in positive ways.   

6.3 Potential Roles of the States  

Strong cooperation between Planning Coordinators and the corresponding states is critical. In its 
National Transmission Grid Study [134], the DOE concluded that regional transmission 
constraints increase electricity costs and decrease electric system reliability to consumers in 
many states. The study concluded that regional planning processes must consider co-
optimization of regional transmission and local non-transmission alternatives when trying to 
eliminate system bottlenecks. A regional co-optimization planning process that involves the 
states would be essential because most transmission investments are recovered under regulated 
cost-of-service rates, and because these investments often have local environmental and 
economic impacts. The DOE study identifies a number of policies that could promote 
investments in new transmission facilities, but also notes that local generation and demand-side 
options at the state level can play an equally important role in delaying or avoiding the need for 
those investments. State-level options such as enabling local customers to reduce load on the 
transmission system through voluntary load reduction, targeted energy efficiency, and reliance 
on distributed generation are important but presently underutilized approaches that could do 
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much to address regional transmission bottlenecks today and delay the need for new transmission 
facilities.  

Often, transmission planning is viewed mainly as a technical activity and is not necessarily 
structured to reflect state policies and priorities in resource deployment. A robust co-
optimization planning, reflecting the interests of states and the region, could address regional 
transmission congestion relief and long-term resource adequacy. On the other hand, state and 
local interests could also block transmission reinforcements that increase energy trade and 
national economic activity, which is part of the motivation for FERC Order 1000.  Formal co-
optimization could help make state and local involvement constructive and contribute to more 
reliable and economic power systems.  Such a planning process should involve the following 
elements: 

• It should provide a formal role for state governments, and thus ensure more active 
participation by state official, including utility regulators, energy offices, consumer 
advocates, and environmental regulators, as appropriate to each state; and 

• It should actively involve consumer, environmental, and other stakeholder interests in the 
planning process, in addition to traditional market players. 

A well-designed co-optimization planning process for generation and transmission can identify 
the needs of state governments and Planning Coordinators, balance competing public interests 
(e.g., cost, reliability, environmental impact), and help allocate scarce resources more efficiently 
among potential investment choices. The participation of the region’s state governments in 
regional transmission planning could accomplish the following: 

• Avoid duplication of effort; 

• Add efficiency to regulatory decision-making and certainty to the marketplace; and 

• Enhance the ability of state PUCs to conduct independent reviews of siting proposals 
within their jurisdiction, while appropriately accounting for regional economic benefits of 
transmission construction. 
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Appendices 

Appendix I.  Mathematical Model Statements  

A.I.1 Generation Planning Model 
The mathematical statement of the generation planning model from Section 2.2.1 is as follows: 

Minimize Present Worth Total Cost = 

��
𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗 + ∑ 𝑂𝑂𝑂𝑂𝐼𝐼𝑂𝑂𝑂𝑂𝐼𝐼𝑂𝑂𝑛𝑛𝑂𝑂𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑗𝑗𝐼𝐼𝐼𝐼

(1 + 𝑂𝑂)𝑗𝑗
𝑗𝑗𝑗𝑗

 

subject to �𝐸𝐸𝑛𝑛𝐼𝐼𝑂𝑂𝑂𝑂𝑗𝑗𝐸𝐸𝑂𝑂𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼𝑂𝑂𝐼𝐼𝑛𝑛𝑗𝑗𝑗𝑗𝐼𝐼
𝑗𝑗

= 𝐷𝐷𝐼𝐼𝐼𝐼𝑂𝑂𝑛𝑛𝐸𝐸𝑗𝑗𝐼𝐼  for all time periods 𝐼𝐼 and years 𝑗𝑗, 

 𝐸𝐸𝑛𝑛𝐼𝐼𝑂𝑂𝑂𝑂𝑗𝑗𝐸𝐸𝑂𝑂𝐼𝐼𝐸𝐸𝐸𝐸𝐸𝐸𝐼𝐼𝑂𝑂𝐼𝐼𝑛𝑛𝑗𝑗𝑗𝑗𝐼𝐼 ≤ 𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂𝐸𝐸𝑂𝑂𝐼𝐼𝑗𝑗𝑗𝑗𝑗𝑗  for all generation technologies _𝑗𝑗, 
periods 𝐼𝐼, years 𝑗𝑗, 

 𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼𝑂𝑂𝐿𝐿𝐿𝐿𝐼𝐼𝑂𝑂𝐸𝐸𝐸𝐸𝑂𝑂𝐼𝐼𝐿𝐿𝑂𝑂𝐿𝐿𝑂𝑂𝐿𝐿𝑂𝑂𝐼𝐼𝑗𝑗𝑗𝑗 ≤ 𝐿𝐿𝑂𝑂𝐿𝐿𝐸𝐸𝐿𝐿 for all years 𝑗𝑗, 

where 𝑂𝑂 is the interest rate, and 𝐿𝐿𝑂𝑂𝐿𝐿𝐸𝐸𝐿𝐿 is the Loss of Load Probability requirement or threshold, 
and ∑ (⋅)𝑘𝑘  reads as “sum over all values of index 𝑘𝑘.” 

 

A.I.2 AC Optimal Power Flow based Generation-Transmission Expansion Planning Model 

Full ACOPF-GTEP model 

This appendix gives a detailed description of the typical ACOPF based multi-period Generation-
Transmission Expansion Problem (ACOPF-GTEP), which is a minimization problem defined by 
the following equations (1) – (12). The objective function is the total operation and investment 
cost. The objective function may also include a transmission loss component. There can be 
several versions of such co-optimization formulations which may include minimization of 
network losses, emission, maintenance costs and so on. Constraints (2) – (3) model the nodal real 
and reactive power balance, which are subject to integer transmission expansion variables of 
candidate corridors.  Constraints (4) – (5) model non-linear AC power flow relations across line 
𝑂𝑂𝑗𝑗. Constraints (6) – (8) model the network security limits for voltage magnitude, voltage angle 
and apparent line power flow. Constraints (9) – (10) model the generation power bounds, which 
are subject to the generation expansion variable. Constraints (11) and (12) model the investment 
bounds on the number of transmission lines and generation size respectively, in a time period. 



 165 

Minimize  (1) 

subject to 

 
 (2) 

  (3) 

  (4) 

  (5) 

  (6) 

  (7) 

  (8) 

  (9) 

   (10) 

  (11) 

  (12) 

where, t is the time period, Tt is the number of hours in a time period, Ci is the operational cost of 
generation in $/MWh, Ii is the investment cost of generation in $/MW, I(i,j) is the investment cost 
of transmission line in $/MW, Pgi is the real power generation in MW (decision variable), Qgi is 
the reactive power generation in MVar (decision variable), Pgi

min & Pgi
max are the minimum and 

maximum real power generation in MW, Qgi
min & Qgi

max are the minimum and maximum reactive 
power generation in MVar, PIgi is the generation capacity investment (decision variable), PIgi

max 
is the maximum allowable generation capacity investment, z(i,j)(0) is the existing transmission 
lines, z(i,j) is the transmission investment (integer decision variable), n(i,j)

max is the maximum 
allowable transmission lines across a corridor, P(i,j) is the real power flow across line ij, Q(i,j) is 
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the reactive power flow across line ij, S(i,j)
max is the maximum apparent power flow across line ij, 

Pdi is the real power demand, Qdi is the reactive power demand, Vi is the bus voltage magnitude 
(decision variable), Vi

max is the maximum limit on bus voltage magnitude, θi is the bus voltage 
angle (decision variable), θij is the bus voltage angle difference, G(i,j) is the line conductance (Y-
bus element), B(i,j) is the line susceptance (Y-bus element), and β is the maximum real to reactive 
power conversion constant at rated voltage based on generator capability curve. 

Relaxed ACOPF-GTEP model using Binary variables 

Instead of the integer decision variable in (11) for optimizing the total number of lines to be built 
across a transmission corridor, a binary decision variable can be used to decide if a certain 
candidate line across a corridor should be built at any time (sb(t)) or not? This replaces the 
integer variable with multi-stage to a variable with two stages (0 or 1), thereby reducing the 
problem complexity. In such a case, the existing arc and candidate arc are represented 
individually in the network, and equations (13-18) are used in the model instead of equations (2, 
3, 8, 11). The ability to consider investing in multiple lines across a corridor can be modeled by 
designing many candidate arcs across that corridor, each having its own binary decision variable. 
Though this MINLP formulation will have a larger number of constraints and variables due to 
inclusion of many candidate arcs, it will have reduced problem solving complexity due to 
removal of multi-stage integer variables. 

    (13) 

    (14) 

   (15) 

   (16) 

          (17) 

        (18) 

In the above model, equations (13) and (14), which have binary variables multiplying non-linear 
power flow equations, can be further relaxed by considering a disjunctive formulation of MINLP 
problem using the big “M” method [148]. 

The MINLP or MILP formulation can be further relaxed to NLP or LP problem by assuming the 
transmission investment variable as continuous, instead of binary. The continuous variable can 
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be constrained close to discrete 0 or 1 value by using a binding constraint relaxed using ε, as 
shown in (19). 

          (19) 

The AC formulation also allows to include shunt devices such as MSCs (Mechanically switched 
capacitors) and SVCs (Static Var Compensators) as investment options. Their influence can be 
accounted within equation (5), which has bus shunt susceptance bi(t) as shown in (20). 

          (20) 

where b(i,j) is the line susceptance and bi is the bus shunt susceptance. 

A.I.3 DC Optimal Power Flow based Generation-Transmission Expansion Planning Model 

The DCOPF formulation is based on the following simplifications to ACOPF model: 

1. R<<<X: The resistance of transmission circuits is significantly less than the reactance. 

2. Voltage angle differences very small: For typical operating conditions, the difference in 
voltage angles for two buses is very low (about 10-15 degrees). For smaller angle 
differences, the cosine function approaches 1.0 and the sine function is the angle itself 
(expressed in radians). 

3. Voltage magnitudes are assumed 1.0: In the per-unit system15

         (21) 

, the numerical values of 
voltage magnitudes are very close to 1.0, and little error occurs with this assumption 
wherever two voltages are multiplied. 

The resulting power flow model has two equations, a real power flow equation (21) which is 
directly proportional to angle difference (in radians) and reactive power flow equation (22) 
which is directly proportional to bus voltage difference. 

       (22) 

                                                 
15 A typical power system with several transformers and machines consists of many different voltage levels. The 
per-unit (p.u.) system simplifies the analysis of complex power systems by choosing a common set of base 
parameters in terms of which, all systems quantities are defined. The different voltage levels are normalized to scalar 
values between 0-1.0 (usually values for various components lie in a narrow range), and the p.u. system provides 
many advantages for modeling, computation and assessment. 
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The DCOPF-GTEP problem has the following constraints as shown in equations (23-29) and 
equations (7, 9, and 12) in Appendix I.2. It should be noted that in the formulation of (23-29), 
binary transmission investment decision variable is used instead of integers, and hence the 
network expansion problem is formulated using arcs representing existing and candidate lines 
individually, so that the decision taken is if a certain candidate line across a corridor should be 
built at any time (sb(t))? The described problem is according to co-optimization definition-A in 
Section 2.3.1. If the co-optimization definition-B is adopted, then the problems can be broken 
into LP model for generation expansion and MINLP of reduced size for transmission expansion. 

          (23) 

     (24) 

   (25) 

    (26) 

     (27) 

          (28) 

         (29) 

The above MINLP model can be relaxed to a MILP using a disjunctive formulation using big “M” 
for candidate branches as shown in (30-32), instead of (26). 

       (30) 

          (31) 

           (32) 

A.I.4 Network Flow based Generation-Transmission Expansion Planning Model 

The network flow model based linear programming cost minimization formulation is shown in 
equations (33-36), where the operational arc flows and investments are minimized in (33). Since, 
both generation and transmission arcs are considered as transportation pipelines (with different 
properties), the only equation that governs this model is (34), the nodal power flow balance 
equation. Equation (35) represents the capacity constraint for both generation and transmission 
arcs. 
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Minimize       (33) 

subject to              (34) 

     (35) 

       (36) 

DC lines are modeled as real power injections (positive and negative) at both the ends of the 
lines, which effectively translate to modeling it as a transportation pipeline. Equation (37) shows 
the inclusion of power injection from a DC line into nodal real power balance equation. To 
consider DC lines among the transmission investment options, candidate arcs for DC lines are 
created separately from AC lines with appropriate cost and operational characteristics. The cost 
may also include the power electronics component costs at both the terminals. 

   (37) 

 

Appendix II.  Review of Selected State-of-the-Art Co-optimization Models  

This appendix presents a review of some existing co-optimization tools that were summarized 
briefly in Section 2.3.2. Many of the tools are in-house research grade software that are being 
developed by the research teams that worked on this whitepaper, which have been tested using 
real-scale test systems and results have been published. The review covered the following 
aspects of the tool, namely, the different infrastructure sectors modeled, the different types of 
infrastructure investment decisions made, the computational model, the associated optimizer and 
solvers, and other planning attributes such as network modeling, optimization time steps, 
handling uncertainties, and modeling demand side options. The reviews also presented the 
development status of each tool, along with their limitations and possible improvements.  

A.II.1 NETPLAN 

The National long term Energy and Transportation Planning (NETPLAN) model is a software 
tool developed at Iowa State University that models the transportation and energy sectors, as 
well as their operational interdependencies, in order to perform national-level, long-term (i.e., 40 
years), and multi-sector infrastructure planning. NETPLAN accounts for electric generation and 
transmission, production and transportation of fuel (coal, gas, and petroleum), and freight and 
passenger transportation systems (highway, rail, air). The co-optimization framework identifies 
investment portfolio (which technology, where, which year, what capacity) based on minimizing 
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long term investment and operational costs in both the sectors, using time steps appropriate to 
each sector. 

A.II.1.1 Types of investment decisions made 

Depending upon the type and scope of investigation, the investment decision variables can 
include generation technologies, transmission, natural gas pipeline, transportation fleet and their 
corresponding static infrastructure.  

● Generation technologies and attributes: Currently, 15 generation technologies have been 
modeled that include pulverized coal, nuclear, oil, integrated gasification combined cycle, 
integrated pyrolysis combined cycle, natural gas combined cycle, combustion turbine, 
hydro, inland wind, offshore wind, solar PV, solar thermal, geothermal, tidal, and ocean 
thermal energy conversion. Each of these technologies’ operational and planning 
attributes include existing capacity, future retirements, operational and maintenance cost, 
emission (CO2, NOx, SOx, particulate matter, ash, and nuclear waste) metrics, capacity 
factor, capacity value, ramp rates, investment cost, and lifespan. 

● Transportation fleet and attributes: The transportation sector comprises of intra- and 
inter-state freight and passenger transportation needs. Freight demand constitutes 
transportation requirements for energy (coal) and non-energy commodities such as cereal 
grains, foodstuffs, chemicals, gravel and wood. The inter-state freight needs are served by 
diesel train and diesel trucks. The inter-state passenger demand is served by airways, 
roadways (gasoline and hybrid cars) and railways (high speed rail (HSR)). NETPLAN 
also models intra-state personal vehicle transportation, comprising of gasoline, 
compressed natural gas (CNGs), fuel-cell (FCVs) and hybrid (HEVs. and PHEVs) 
vehicles. The operational and planning attributes include existing capacity, investment 
cost and lifespan of vehicles and their corresponding commuting infrastructure (roads, 
rail tracks), vehicle occupancy factor, operating and maintenance cost, emission (CO2) 
metrics, and energy consumption (gallons or MWh per vehicle-mile). 

In cases, where the focus needs to be only on the energy network, the model can be simplified by 
screening out the data related to the transportation network, and the transportation related energy 
demand can be represented by a constant demand at the energy node. 

A.II.1.2 Features and computational methods of model optimizer 

Optimization in NETPLAN occurs at two levels:  

● A lower-level linear programming-based cost minimization program that produces a 
minimum cost portfolio of energy and transportation investment, with associated 
resilience and sustainability metrics; and  
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● A higher level Non-dominated Sorting Genetic Algorithm-II (NSGA-II) multi-objective 
evolutionary algorithm that identifies Pareto optimal solutions16

Sustainability metrics include annual CO2, SO2, and NOx emissions. The resilience of long-term 
planning solutions is evaluated in terms of the system’s ability to minimize the impact and 
recover from extreme events such as Katrina/Rita hurricanes, loss of petroleum supply from the 
Middle-east, or say, shutdown of 70% of nuclear plants.  

 in the space of cost, 
resilience, and sustainability metrics.  

A.II.1.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: The optimization can be 
performed at any time step, viz. hourly, monthly, and yearly, and accordingly electric and non-
electric loads (natural gas, freight and passenger transportation) can be represented either by 
chronological data or duration curves. If the electric sector is not represented at an hourly time 
step, then the electric load is represented by slices of load duration curves in the chosen time 
period. For instance, at a yearly time step, the electric load is represented in terms of sets of 
average load for a particular slice of load duration curve and the number of hours in the year that 
slice spans. 

Network representation and transmission options: Transmission lines can be modeled as 
transportation pipelines or with DC power flow equations. The line attributes include existing 
transmission capacity between nodes, losses, investment cost, lifespan, and line impedances. 
Inter-state gas pipelines are modeled with a transportation model, i.e., nodal balance. However, 
currently the transmission options are not differentiated based on KV levels or DC/AC lines. The 
transmission line capacities can be made a function of pre-determined line lengths between any 
two existing nodes (St. Clair curves (refer footnote 3)); however this feature is currently not 
modeled. 

Depreciation and end-period effects: A discount and inflation rate is applied to the objective 
function of the optimization to represent the future year costs in present values. Yearly 
retirements are input exogenously to the program, and they are not decision variables. A salvage 
value approach is used to avoid the end effects in the final years of the long-term optimization. 
This is accomplished by prorating the investment cost of the infrastructure at a particular year to 
the available life within the optimization horizon, assuming a typical operational lifespan for 
each infrastructure. 

                                                 
16 In a multi-objective decision making, there is rarely a single solution that is best in all the objectives. Pareto 
optimal solution is a popular way to handle this tradeoff associated with multi-objective problems, where a set of 
solution (depicting a frontier in the multi-dimensional plane defined with individual objectives as the axes) is 
identified. In this set there is no solution that is dominated by some other solution in all the objectives, and a solution 
is the best compared to the rest in atleast one of the objectives. 
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Modeling of operational and maintenance costs: The operational and maintenance cost is one 
of the parameters of the various network arcs in NETPLAN (i.e., generator arc, transmission arc, 
fuel arcs (coal, petroleum, gas supply), transportation arcs (pipeline, freight and passenger 
vehicles)), based on which minimum cost energy flow optimization is performed. The arcs that 
connect the fuel network to the electric network have an efficiency parameter which is a function 
of the respective generator’s heat rate (a flat heat rate is assumed for all ranges of power output). 
Fuel cost characterization is based on geography: the cost and capacities of four varieties of coal 
supply across various regions in the country are modeled. The natural gas production cost and 
capacities, gas imports, pipeline capacities and storage capacities are also characterized based on 
geography. 

Optimization interval: Currently studies are done for the full 40-year period with inter-temporal 
relationships, where operations are optimized for each sector at user defined time intervals 
(hourly, monthly, yearly), and investments are optimized for all sectors at yearly time intervals. 

Application of reserve constraints: The operational reserve (regulation and spinning reserves) 
and ramping requirements are modeled as a function of net-load variability (i.e., load – variable 
generation output), and consequently is a function of investment decisions in variable generation. 
The ability of each generation technology to provide these ancillary services is subject to its 
ramp rate at the respective time interval (i.e., 1-minute for regulation services and 10-minute for 
spinning reserve services). 

Provision for demand-side option: Currently, demand side and electric energy storage options 
are not modeled, but it can be done. Section 3.2.3.1 discusses about modeling these resources in 
long-term planning. 

Methods of handling uncertainty: The uncertainties can be classified into local (such as yearly 
fuel prices, variable generation output, generation availabilities) and global (futures governed by 
policies or public reactions such as no more coal generation, natural gas dominated electric 
sector, high renewables). The local uncertainties can be handled by many solves of the LP cost 
minimization for different input data, and producing a final robust and economic plan subject to 
the probabilities of considered scenarios. The global uncertainties are handled via a “flexibility 
design” optimization problem whereby two costs are minimized: (1) a cost of a core investment 
that is made independent of the scenario; and (2) the cost of adapting the core investment to the 
needs of a particular scenario should it occur.  A detailed description of this approach concept is 
given in (Diego, 2013), where it is applied to national long-term generation expansion planning.  

A.II.1.4 Development status, previous applications and associated typical run times 

A complete dataset of the national energy and commodity and passenger transportation system 
has been developed for U.S. using DOE-EIA, NHTS and industry sources. The data and 
NETPLAN software has been validated, and interesting analyses have been performed including: 
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(a) National level electric (13 electric regions) and transportation (freight and personal 
vehicles in 48 states) portfolio planning  [59] 

(b) Nation-wide transmission overlay design and benefit assessment (13 electric regions, no 
transportation) [71] 

● Run time: ~10 minutes (636,201 variables, 495,920 constraints) 

(c) National level electric (13 electric regions) and transportation (freight and inter-state 
passenger transportation including HSR, Air and roadways) portfolio planning (Krishnan 
et al. [70]) 

● Run time: ~15 minutes (889,160 variables, 748,680 constraints) 

(d) National level electric (13 electric regions, no transportation) portfolio planning with 
operational effects [69] 

● Run time: ~1 hour (823,921 variables, 850,560 constraints) 

(e) National level electric (62 electric regions) and transportation (freight and personal 
vehicle in 48 states) portfolio planning 

● Run time: ~10-17 hours (3,444,800 variables, 2,664,640 constraints)  

A.II.1.5 Limitations and challenges 

The co-optimization of transmission and generation resources is currently performed 
simultaneously with the transportation model of transmission lines, which renders the 
optimization linear. However, in the future if transmission expansion has to be modeled using 
DC power flow, then the resulting non-linear optimization model has to be formulated as mixed 
integer linear program using disjunctive format. Advancements in computational efficiencies 
will be one of the future developments. This will enable expanding the model’s spatial (electric 
regions) and temporal granularity (optimization time steps and horizon). Decomposing the LP 
problem using Bender’s decomposition methods and parallelization have been and are being 
studied. NSGA-II based multi-objective optimization is parallelizable, and has been tested by 
running parallel LP codes within each generation of NSGA-II on multiple clusters. 

A.II.2 An iterative approach to generation/transmission co-optimization 

Iowa State University has developed a comprehensive tool to design inter-regional transmission 
overlays using an iterative approach for co-optimizing generation and transmission resources, 
where NETPLAN is an integral part. 
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A.II.2.1 Types of investment decisions made 

Generation and transmission planning is done sequentially, but coordinated by an iterative 
approach as shown in Figure A.II-1. 

 

Figure A.II-1. Iterative approach to generation/transmission co-optimization 

A.II.2.2 Features and computational methods of model optimizer 

Generation Planning: This step determines the amount, type, location, and timing of future 
generation capacity investment using NETPLAN software. The objective of the linear 
optimization is to minimize the total cost, which comprises of generation investment and 
operation cost that include cost incurred from natural gas and coal production and transportation.  

Transmission Candidate Selection: This stage selects proper transmission candidates between 
node pairs based on a series of factors which may influence transmission investment decisions, 
including right of way availability, economic value, restricted land, land type, population density, 
forest, lightning density, wind, ice-loading and others. This is accomplished using a “minimum 
spanning tree” algorithm that weighs the cost of all possible transmission arcs based on the 
factors mentioned above. 

Network expansion optimization: In this step, based on the generation portfolios and 
transmission candidate set above, a Mixed Integer Linear Programming (MILP) model is utilized 
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to optimize transmission investments for 40 years. The objective is to find the transmission 
investment plan with minimum total investment and production cost subject to power balance, 
DC power flow, generation capacity, and transmission loadability constraints. Existing and 
future generation capacities are assumed to be fixed. Only the transmission network is expanded. 
For each generation expansion scenario, a particular transmission design is obtained. The 
problem statement is summarized below: 

Minimize (over 40 years)  

Transmission investment cost + Generation production cost + Levelized transmission loss 
cost 

Subject to: 

Power balance in each node 

DC power flow constraints (in disjunctive format) 

Generation capacity constraints 

Binary Investment decision variables 

A.II.2.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: The optimization can be 
performed at any time step, viz. hourly, monthly, and yearly, and accordingly loads can be 
represented by chronological data or load duration curves. 

Network representation and transmission options: The transmission network optimizer 
models the network using DC power flow. Non-linear constraints in the DC flow investment 
model are eliminated by using disjunctive formatted inequality constraints. Consideration is 
given to 500kV EHVAC, 765kV EHVAC, 600kV HVDC and 800kV HVDC, which are today’s 
most popular and technically mature transmission technologies for bulk power transfer. 
Investments can be made in multiple lines across a single corridor. The AC transmission line 
capacities are made a function of pre-determined line lengths between any two existing nodes (St. 
Clair curves (refer footnote 3)). 

Depreciation and end-period effects: All costs have been discounted to the reference year 
(2010 dollars). Yearly retirements are modeled exogenously. A salvage value approach is used to 
avoid the end effects in the final years of the long-term optimization. This is accomplished by 
prorating the investment cost of the infrastructure at a particular year to the available life within 
the optimization horizon, assuming a typical operational lifespan for the infrastructure. 

Modeling of operational and maintenance costs: The transmission candidate selection based 
on “minimum spanning tree” algorithm chooses cost for every possible arcs between all node 
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pairs as a function of many factors which may influence transmission investment decisions, 
including right of way availability, economic value, restricted land, land type, population density, 
forest, lightning density, wind, ice-loading and others. 

Optimization interval: The MILP is performed for the full 40-year period, where investments 
are optimized at yearly time intervals and operations are optimized at user defined intervals 
(hourly, monthly or yearly). 

A.II.2.4 Development status, previous applications and associated typical run times 

The electric network is built up by reducing the Ventyx national production cost model, and 
therefore represents the U.S. with 62 nodes, 142 existing transmission paths, and 15 different 
generation technologies. Several studies have been done to expand transmission economically 
for various generation expansion scenarios (i.e., high wind, high solar and high geothermal) 
(Villegas et al.). 

● Run time: ~ 25-46 hours (1,855,612 variables, 3,244 Binaries, 1,918,260 constraints) 

A.II.2.5 Limitations and challenges 

The computational challenge is serious, and hence two methods have been investigated. The first 
is to implement a parallel computing algorithm on a high performance computing platform at 
ISU, which has 3200CPUs, 44TB memory and a peak performance of 15.7 TF. The second is to 
enhance traditional Benders’ decomposition algorithm to speed up its convergence rate. 

A.II.3 META•Net modeling system 

The Market Equilibrium and Technology Assessment Network (META•Net) Modeling System 
developed at Lawrence Livermore National Laboratory [73] could be used for building and 
solving multi-period equilibrium energy economic models to analyze the energy system.  

A.II.3.1 Types of investment decisions made 

The energy system model is comprised of market dynamics within and across sectors such as 
major consumers (industrial, residential, commercial), electric (generation and transmission), 
transportation, and fuel sources (petroleum, coal and gas). The model optimizes the component 
capacities within each sector, which includes generation and transmission in the electric sector.  

A.II.3.2 Features and computational methods of model optimizer 

META•Net is a market equilibrium model that optimizes the yearly operations and dispatch of 
supplies to meet the demand within each sector at hourly time steps. The component capacities 
are adjusted each iteration, but once they are set, they are constant for the entire year’s 
optimization of operations. Essentially, the capacities are adjusted until the marginal value of 
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capacity is equal to the marginal cost of additional capacity (i.e., investment cost). The decision 
variables are continuous, and there is no linearity assumption. Functions do have to be convex.  

Description of the model: META•Net models a market economy as a network of nodes 
representing resources (coal, gas, petroleum), conversion processes (generation, transmission), 
markets, and end-use demands (industrial, residential, commercial). Commodities flow through 
this network from resources, through conversion processes and markets, to the end-users. 
META•Net then finds the multi-period equilibrium prices and quantities. This economic 
equilibrium solution is equivalent to a cost minimization solution (proof by Hogan and Weyant 
[56]). The solution includes the prices and quantities demanded for each commodity along with 
the capacity for each conversion process (which includes infrastructure investment decisions). A 
simple schematic of algorithm is illustrated in Figure A.II-2 [12, 74]. 

• Optimizing operations: The markets represent the points in the system where a total 
demand (e.g., for electricity) will be allocated among a set of suppliers. META•Net finds 
a set of allocations for each hour that is an economic equilibrium—all the demands are 
met and each market is in equilibrium. The demand nodes send down a quantity 
demanded. The market nodes allocate total demand among the generators based on prices 
provided by the generators (generators with lower prices receive higher allocations). 
When a generator’s allocation is less than its capacity, it sends a price equal to its 
operating cost. Such a low cost can elicit a demand that exceeds the capacity of the 
generator. In that case, over a series of iterations the generator increases its price. As the 
price increases, the market allocates less demand to the generator until a price is found 
such that demand sent to the generator is equal to its capacity. Congestion occurs when 
the transmission node's capacity is reached. The transmission node responds by sending a 
higher price for its "product" (i.e., transmitted electricity). This will force the market node 
to shift load away from that transmission line to another supplier. If the market nodes are 
highly price sensitive, the price in a particular hour is approximately equal to the system 
marginal cost at that hour.  

• Optimizing generation investments: Based on the above, the generator can make an 
accurate estimate of the system marginal cost or price. From this, it can estimate the 
shadow value on the constraint that generation cannot exceed capacity, and, through a 
series of iterations, adjust its capacity until the condition all the demands are met. This 
can be interpreted as a perfect market in which each supplier to a market (i.e., each 
generator) receives as payment the marginal cost in the market. It then can make the 
financial calculation as to whether or not additional increments of capacity would earn an 
acceptable rate of return and increase or decrease its capacity accordingly. 
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Figure A.II-2. META•Net schematic 

A.II.3.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: Multi-year analysis uses a load 
duration curve, where the total energy for each load factor is allocated among the generators. For 
a single year capacity planning analysis, chronological hourly load of specific year is used.  

Network representation: Transmission lines are modeled as transportation pipelines, which 
move a commodity from one place to another at a cost and an efficiency loss.  

Modeling of operational and maintenance costs: The market equilibrium algorithm works 
based on the offers and bids submitted by generator companies and load entities within the 
electric sector. 

Optimization interval: Investments are optimized at yearly time intervals and operations are 
optimized at user defined intervals (hourly, weekly, monthly or yearly). 

Provision for demand-side option: META•Net allows for price sensitive demands. 
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A.II.4 COMPETES  

The planning model formulation of COMPETES [19] (COmpetition and Market Power in 
Electric Transmission and Energy Simulator) from Energy Research Centre of the Netherlands 
(ECN) is built upon the short-run competitive and oligopolistic market simulation models 
described in [79] and [54].  The COMPETES website provides information on recent 
applications and the dynamic (capacity expansion) formulation. 

A.II.4.1 Types of investment decisions made 

Investment decisions include EHV AC and DC transmission line additions and new generation 
capacity (thermal dispatchable and renewable intermittent), both represented as continuous 
decision variables denominated in MW.  

A.II.4.2 Features and computational methods of model optimizer 

The basic model is a linear program that is solved iteratively. Between iterations, there are two 
updates: one of the linearizations of the bilinear Kirchhoff’s voltage law relationships between 
impedance and flows, and the other of load levels based on the locational marginal prices 
calculated by the linear programming. The model is run until convergence is achieved. In general, 
multiple starting points for the iterative process are required because of discontinuities in cost as 
a function of a corridor’s transmission capacity at zero capacity; as a result of that discontinuity, 
the iterative process may not converge to the global optimum.  If multiple years are considered, a 
series of static (one year) models are solved, with one year’s solution constraining the next’s. 
Oligopoly versions of the model (based on Cournot or conjectural variation game 
representations) are solved with a complementarity solver (PATH) available from the AIMMS 
modeling software http://business.aimms.com/. 

A.II.4.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: The dispatch sub-problems are 
presently represented as a sample of hours (equivalent to a load duration curve). Sufficient hours 
need to be chosen in order to adequately capture the joint distributions of loads and intermittent 
renewable generation over the study region.  

Network representation & transmission options: A linearized DC load flow is used, with 
voltage law equations that force the sum of the products of impedance and flow around any loop 
of the network to be zero. Quadratic loss terms are included as in [52]. As far as the transmission 
options are concerned, a single transmission technology is predetermined by the analyst for each 
corridor, although different corridors can use different technologies. The present version 
represents DC links between non-synchronized areas. The flow limits are made a function of 
investment capacity, while the corridor lengths are fixed.  
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Depreciation and end-period effects: End effects are not considered; optimizations are for one 
planning year at a time, with one year’s decisions constraining investment choices in the next 
planning year.  

Modeling of operational and maintenance costs: System operational and maintenance costs 
are modeled as a cost coefficient on generation dispatch variables, and as an adder to the 
investment cost of transmission lines (representing the present worth of future O&M). 

Optimization interval: In the present applications, investment decisions are made for a single 
year, and then constrain decision in the next planning year (typically 5 years in the future)  

Application of reserve constraints: Installed capacity reserve margins are imposed on 
collections of buses (subregions), alternatively, more sophisticated representations that allow for 
capacity trading among subregions are possible. Operating reserve constraints are not presently 
considered. 

Provision for demand-side option: Demand response (to dynamic prices) is represented by 
adjusting load between iterations of the linear program in response to the latest set of prices (dual 
multipliers to the energy balances). 

Methods of handling uncertainty: Short-run load and renewable generation output variability 
is handled by considering a large enough sample of hours to adequately represent their joint 
distribution. Generator outages are approximated by deterministic derating of capacity. Long-run 
uncertainties only considered by sensitivity analyses.  

A.II.4.4 Development status, previous applications and associated typical run times 

The model has been applied in a number of policy studies concerning the short-run and long-run 
development of the north-western Europe and European Union markets [79]. The applications 
consider each of 27 countries in the EU as a node/bus, except for Denmark which is split 
between two synchronous areas. An application to the design of the EU grid in 2015 has 
demonstrated that consideration of demand response can make a significant difference in the 
optimal transmission reinforcement solutions, especially in the heavily congested Western 
European area. 

A.II.4.5 Limitations of the model 

•  All investments are continuous; lumpiness is not considered. Voltages and technology 
(AC or DC) need to be preset by the user. 

•  Energy efficiency programs have to be chosen exogenously, but demand response is 
modeled as elastic demand curves. 
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•  The coarse scale of the model (countries or subregions as nodes) means that this is most 
useful for assessing the economic benefits of interconnection expansion at a rough scale, 
rather than individual circuit evaluations. 

A.II.5 Stochastic transmission planning model 

This model has been developed at Johns Hopkins University, in collaboration with ECN and 
Cambridge University researchers [52, 90, 142]. 

A.II.5.1 Types of investment decisions made 

Investment decisions include EHV transmission line additions (represented as binary decision 
variables) and new generation capacity (thermal dispatchable and renewable intermittent, 
represented as continuous decision variables denominated in MW). 

A.II.5.2 Features and computational methods of model optimizer 

The basic model is a mixed integer linear program that is solved non-iteratively. Larger versions 
of this model are solvable by a Benders decomposition method, which iterates between a master 
problem (investment) and set of subproblems (dispatch). 

A.II.5.3 Summary of additional planning tool attributes 

This section is included to identify additional features of software applications for planning 
which are important to power system design but germane to any planning software and not 
necessarily unique to those which perform co-optimization.  

Load duration curve or chronologically ordered load curves: The dispatch sub-problems can 
represent load as either a sample of hours or as a sample of days, each with 24 chronological 
hours. Sufficient hours are chosen in order to adequately capture the correlations, as well as 
means and standard deviations, of loads and intermittent renewable generation over the study 
region.  

Network representation & transmission options: For general networks, a linearized DC load 
flow is used based with explicit phase angles for each bus. To linearize the bilinear (product) 
relations between corridor impedance and flows in the Kirchhoff’s voltage law equations of the 
linearized DC load flow, the disjunctive approach from Ref. [5] is used. This allows modeling of 
the simultaneous effect of a new line upon both corridor thermal capacity and impedance. Both 
individual corridor capacity (based on thermal or St. Clair curve-based limits) and interface 
capacity (covering several lines and considering limits resulting from off-line n-1 analyses) can 
be represented. The formulation is considerably simplified for radial networks, requiring neither 
the angle variables nor representation of the voltage law. Appropriate choice of cost, flow limit, 
and per unit impedances for each transmission reinforcement alternative is considered within a 
corridor.  
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Depreciation and end-period effects: Retirement of generation can be done exogenously (by a 
fixed depreciation amount in each year) or using decision variables whose costs considers the 
going forward cost of maintaining generation capacity. End-period effects are avoided by 
assuming that the last year considered repeats infinitely. For instance, if year 2030 is the last year 
dispatched, then that year’s cost is multiplied by a factor that is equivalent to the same cost 
occurring in 2031, 2032, etc. 

Modeling of operational and maintenance costs: As a cost coefficient on generation dispatch 
variables, and an added to the investment cost of transmission lines (representing the present 
worth of future O&M). 

Optimization interval: In the present applications, investment decisions are made in years 0 and 
10, and investments are assumed to be in place 10 years after the decision is made; the dispatch 
in years 10 and 20, constrained by those investments, is optimized.  

Application of reserve constraints: Installed capacity reserve margins are imposed on 
collections of buses (subregions), alternatively, more sophisticated representations that allow for 
capacity trading among subregions are possible. Operating reserve constraints are modeled by 
defining operating reserve variables for each generation type at each location in each period, and 
constraining the total amount provided by subregion. 

Provision for demand-side option: Only through exogenous load adjustments prior to running 
the model; the linear programs assumed that load in each hour is fixed. 

Methods of handling uncertainty: Short-run load and renewable generation output variability 
is handled by considering a large enough sample of hours to adequately represent their joint 
distribution. Generator outages are approximated by deterministic derating of capacity. A notable 
feature of this model is its ability to consider multiple scenarios of future economic, 
technological, and regulatory conditions. This is done through stochastic (two stage) 
programming in which the first stage investments (“here and now” decisions) must be made 
without knowing which scenario will occur, and the second stage investments (“wait and see” 
decisions) are made after the scenario is known. This allows for calculation of indices of the 
economic significance of uncertainty, such as the value of perfect information17

                                                 
17 The expected value of perfect information (EVPI) provides an upper bound on the value of better forecasts for 
uncertain parameters and scenarios, and is calculated as the difference between two estimates of the present worth of 
the net benefits of transmission expansion: the probability-weighted (“expected”) net benefits if better forecasts are 
available (so that transmission investments can be tuned to the scenario that is most likely to occur), and the 
expected benefits in the absence of better forecasts (so that investments made now have a greater risk of being 
stranded, while potentially beneficial investments might not be made because of high risks of their costs exceeding 
their benefits). Reducing uncertainty through better forecasts and scenarios has value (a positive EVPI) only if better 
forecasts might change investment decisions; if decisions are not changed, then the economic value of better 
forecasts is zero. We have quantified the value of better forecasts of gas prices, demand, and government siting and 
renewables policy as approximately 100M to 3.7B U.K. pounds (over 30 years) for the U.K. [142]. For the WECC, 
we estimated an EVPI of $45.4B under policy uncertainties concerning climate and renewable policy [90]. 

 and the cost of 
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ignoring uncertainty.18

A.II.5.4 Development status, previous applications and associated typical run times 

 The latter quantifies the consequences of using deterministic planning 
rather than stochastic planning; the result is, in general, lower net benefits for the transmission 
plan, averaged over all the scenarios. For instance, we have found in our analyses of WECC that 
the best transmission plan under uncertainty includes such flexible transmission backbone 
additions that keep later options open, even though some of those particular additions would not 
be chosen by a deterministic plan for any of the individual scenarios (see the highlighted circuits 
in Table 1 of [90]).  

The model has been applied to a radial system (the United Kingdom) and a 240-bus 
representation of the WECC. Each has on the order of 10E5 to 10E6 decision variables for a two- 
stage decision problem with three to seven scenarios, and is solved within minutes on a desktop 
computer. 

A.II.5.5 Limitations of the model 

• Does not include n-1 constraints endogenously 

• Demand management or response not included endogenously 

• The expected benefits in the absence of better forecasts (so that investments made now have 
a greater risk of being stranded, while potentially beneficial investments might not be 
made because of high risks of their costs exceeding their benefits). 

• For systems larger than ~250 (aggregated buses), ~5 scenarios, ~2 planning stages, and 
~300 hours/yr, decomposition is needed, given the capabilities of typical new desktop 
computers. 

• More than two investment decision stages are desirable to ensure that the assumption of 
known scenarios in the last stage does not bias the immediate (first stage) investment 
decisions. 

                                                 
18 We have quantified this cost (also known as the value of the stochastic solution or the value of planning 
uncertainty) for high-voltage transmission planning in the U.K. and western U.S. (WECC). In the U.K., better 
forecasts of gas prices, demand, and government policy concerning siting of renewables and nuclear power in the 
U.K. would be worth about 100M U.K. pounds (over 30 years) in the case of backbone transmission planning [142]. 
Meanwhile, ECIU was estimated to be $46.7 billion in the case of backbone and major interconnection planning in 
the Western U.S. (WECC) under uncertainties concerning climate and renewable policy [90]. The latter value is 
greater than the anticipated cost of transmission investments over this time because better transmission investments 
can have an amplifying effect on generation cost savings. The optimal plan under uncertainty also has much less 
exposure to risk of stranded assets than deterministic plans developed under some scenarios. 
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A.II.6 ReEDS 

The Regional Energy Deployment System (ReEDS) is a long-term capacity-expansion model for 
the deployment of electric power generation technologies and transmission infrastructure in the 
contiguous United States. Developed at the National Renewable Energy Laboratory's (NREL) 
with support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable 
Energy, ReEDS is designed to analyze critical issues in the electric sector, especially those 
relating to renewable energy resources, potential, and integration. 

A.II.6.1 Types of investment decisions made 

A linear transmission and generation co-optimization model, ReEDS selects generation and 
transmission investments and dispatches units to meet load and reliability requirements at least 
system cost. ReEDS includes a full suite of electricity generating technologies: several distinct 
coal technologies, natural gas turbines and combined-cycle units, nuclear, geothermal, biopower, 
hydropower, onshore and offshore wind, solar photovoltaic and thermal. Electricity storage 
systems are also available: pumped hydropower, compressed air (CAES), and batteries. Limited 
demand-side options include ice storage and interruptible loads. Electric and hybrid-electric 
vehicles are not included in the investment decisions, but charging of exogenously defined 
electric vehicle adoption can affect electric loads.  

Plant operation is characterized by fuel type, heat rate; emissions levels for CO2, SO2, NOx, and 
Hg; outage rates; ramping cost; and ability to provide ancillary services. Variable resource 
renewable energy units are also characterized by resource characteristics—annual and time-slice 
average capacity factor and probability distribution of likely output. Storage units are also 
characterized by round trip efficiency. Investment decisions consider assumptions of capital cost, 
construction schedule, availability of financing and tax incentives, and fixed and variable 
operations and maintenance costs. 

Transmission lines are built as MW of new carrying capacity over a known-length corridor, at a 
capital cost defined in $/MW-mi. While transmission is built continuously rather than in 
increments of conductors at voltage level, transmission costs reflect an assumption that dense 
areas of the country are likely to build 765-kV lines while other areas build 500-kV lines. 

A.II.6.2 Reduced-form dispatch 

The dispatch representation in the model is across 17 annual time-slices, where 16 time-slices are 
based on one representative day from four seasons, with each day comprising four diurnal slices. 
The seventeenth time-slice is a super peak representing the 40 highest-load hours of the summer. 
Model linearity necessitates certain approximations: aggregate units, flat heat rates, linear power 
flow. 



 185 

ReEDS is required to serve load and meet adequacy and operational reserve requirements in each 
time-slice through construction and operation of generating units and sufficient transmission 
capacity. 

A.II.6.3 Features and computational methods of the model optimizer 

ReEDS is a linear optimization model written in GAMS, solved with CPLEX. ReEDS operates 
from the year 2010 to 2050 in sequential fashion: 21 successive solves, one for each two year 
period, with limited knowledge of future behavior. Each solve makes simultaneous investment 
and dispatch decisions: one round of investment with a 20-year evaluation period for operation. 
The primary purpose of the sequential structure is to allow non-linear updating of system 
infrastructure parameters (e.g., transmission line susceptances) between individual linear 
optimizations. 

A.II.6.4 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: The 17 time-slices in ReEDS 
are organized by season and time-of day: summer afternoons, spring mornings, etc. Each 
representative day is considered to be experienced chronologically, but there is limited 
information transfer across seasons. 

Geographic resolution and transmission characteristics: For a national model, ReEDS has a 
highly resolved regional structure. Roughly 300 transmission lines connect the 134 balancing 
areas. Load and generation are balanced, and reserves required, at each balancing area; and a 
linear DC power flow algorithm governs transmission flows among them. Transmission lines are 
characterized by carrying capacity (MW) and susceptance. While the rest of the network is 
subject to Kirchoff’s laws, interconnect interties and the major high voltage DC lines are granted 
flow control. Linearity dictates aggregate transmission lines and precludes representation of 
explicit voltage levels. 

Integration of variable resource renewable energy technologies: ReEDS has been designed to 
focus on a variety of issues related to renewable energy technologies, including accessibility and 
cost of transmission, regional quality of renewable resources, seasonal and diurnal load and 
generation profiles, variability and uncertainty of wind and solar power, and the influence of 
variability on the reliability of electric power provision. In addition to the regional structure, 
ReEDS accomplishes this through explicit statistical treatment of the variability in wind and 
solar output over time, and consideration of ancillary service requirements and costs. 

In each time-slice, wind and solar resources are characterized by long-term-average time-slice 
capacity factor and the probability distribution of output across the time-slice. Based on that 
distribution as well as the performance characteristics of the balance-of-system, including the 
topology of the transmission network, renewable generators are assigned capacity values that 
reflect their effective load-carrying capacity, induced operating reserve requirements, and 
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expectation of potential output curtailed due to generation in excess of load. These characteristics 
maintain statistical reliability of the electric system through planning and operating reserve 
requirements and, along with resource depletion, steadily reduce the value of wind and solar to 
the electric system as their contribution grows. 

Demand-side options: ReEDS has limited demand-side options including a supply curve of 
interruptible loads, allowed investment in ice-storage for time-shifting of cooling loads, and 
external projections from other NREL models for adoption of rooftop PV and electric vehicles. 

A.II.6.5 Development status, previous applications, and associated typical run times 

ReEDS is a fairly mature modeling framework, having been used for numerous policy or 
technology analysis projects over the past several years. Among the analyses for which ReEDS 
has been used are the 20% Wind Energy by 2030 report [135]; the Renewable Electricity Futures 
Study [95], an analysis of how the United States might provide 80% of its electricity from 
renewable sources; and the Sunshot Vision Study [128], which explores how solar technologies 
might deploy if cost and performance continue to improve. Most analyses consist of an ensemble 
of scenarios with a range of input assumptions—technology and fuel prices, policy options, 
resource scenarios—to provide a set of potential futures or a range of impacts of a policy, 
technological advancement (e.g., R&D), or shift in economic conditions. Individual ReEDS 
scenarios (2010-2050) solve in 4-6 hours. 

A.II.7 Prism 2.0 model 

Prism is an Electrical Power Research Institute (EPRI) project to conduct the U.S. Energy and 
Environmental Analysis. This project aims to understand the greenhouse-gas-reduction potential 
of the electric sector in the U.S. EPRI released its first Prism analysis in 2007, together with the 
findings based on Model for Estimating the Regional and Global Effects of Greenhouse Gas 
Reductions (MERGE). In 2009 EPRI released the updated Prism and MERGE analysis [31]. In 
the EPRI report, Prism analysis provided an assessment of the CO2-reduction potentials of eight 
key technology areas in the electricity sector, including end-use energy efficiency (6.5%), 
transmission and distribution (0.9%), renewable energy resources (13%), nuclear power (11%), 
fossil efficiency (3.7%), carbon capture and storage (11%), electric transportation (9.3%), and 
electro-technologies (6.5%). On the other side, the MERGE analysis helped find out the most 
economic combination of different technologies while meeting a specified CO2 emission 
constraint. It made projections of the U.S. electricity generations and costs from different 
technologies, the CO2 prices, and overall costs of carbon emission reductions.  

In late 2010, EPRI initiated the Prism 2.0 [32] collaborative project to conduct analyses to assist 
U.S. generating companies to understand various technology options and cost scenarios to better 
cope with their generation fleet asset management. This is because new regulations from U.S. 
Environmental Protection Agency (EPA) concerning various pollution sources will be 
implemented in the upcoming decades. This will become a critical issue for the U.S. coal-based 
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generation fleet. The Prism 2.0 analysis projects the generation mix in the next decades based on 
different scenarios of the implementation of the environmental regulations. Details of the Prism 
2.0 model will be discussed in the following five parts, including types of investment decisions, 
model features and computational methods, additional planning tool attributes and model and 
input assumptions, development status and analysis results, and model limitations. 

A.II.7.1 Types of investment decisions made 

As described in [97], the goal of the Prism project is to help understand the potential of electric 
sector CO2 reduction. Prism 2.0 project provides a bottom-up (including multiple energy 
technology areas) estimate of greenhouse gas (GHG) reduction potentials, but not a rigorous 
unit-by-unit assessment, not a detailed economic analysis, and not a climate policy 
recommendation. The U.S. Regional Economy, Greenhouse Gas, and Energy (US-REGEN) 
model is the analytical platform or tool EPRI uses in the Prism 2.0 project. At the same time the 
Prism 2.0 project was initiated to accelerate the development of US-REGEN model and then 
study and analyze the expansion planning issues in the electric sector and problems in the 
broader U.S. energy sector. As is stated in EPRI Prism 2.0 report, “At times people use the term 
‘Prism 2.0 model’ for the ease of communication.” In the electric sector part of the US-REGEN 
model, or the generation planning model, it follows “the standard approach of aggregating 
electric power units with similar attributes at the regional level”. The electric sector of the model 
makes decisions on generation capacities (on multiple generation technologies across 15 
geographical regions), additional inter-regional transmission, and dispatch to meet energy 
demand for both generation and inter-region transmission. The generation portfolio includes new 
coal generators, existing coal generators, retrofitted coal generators, natural gas generators, both 
existing and new nuclear power, hydro power, wind power, and other renewable generation. For 
the generator asset owners, the model assumes that, starting from 2015, the decision for each 
existing coal generator is either to retire or to retrofit to meet the current and environmental 
regulations expected to be in force between 2015 and 2020. 

A.II.7.2 Features and computational methods 

US-REGEN model is a combination of two models, a dispatch and capacity expansion model of 
the electric sector and a dynamic computable general equilibrium model of the U.S. economy 
including sector details across 15 geographical regions. Power units (with similar attributes) are 
aggregated at the regional level and intra-annual load segments are used. Although studies of this 
model based on three cases have been run to have multiple analyses, the US-REGEN model is a 
deterministic model. 

The macroeconomic model of US-REGEN uses the classical Arrow-Debreu general equilibrium 
framework (one of the most general economy models whose existence was proven in [3]) 
incorporating the whole economy over the planning horizon. This also takes into account the 
observed U.S. economy data covering all transactions among firms and households and 
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forecasted economic growth in the future. As is discussed in the 2012 Prism 2.0 report, 
“Production in each sector is described by a constant elasticity of substitution (CES) production 
function. Firms are assumed to maximize profits, and households maximize utility, the latter 
assumed to be a function of consumption across the time span of the model.” Models coupling 
equilibriums usually are hard-to-solve optimization problems. In their approach, the two models 
are solved iteratively to convergence. 

A.II.7.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: Power units (with similar 
attributes) are aggregated at the regional level and intra-annual load segments are used. 

Network representation and transmission options: The power grid representation in Prism 2.0 
model is similar to a transportation network. It does not consider power flow analysis using 
Kirchhoff’s current and voltage laws.  

Optimization interval: This model assumes only one-time investment decisions will be made. 
The decisions are used evaluate the environmental controls on power systems and U.S. economy 
out to 2035. 

Application of reserve constraints: Based on available publication, no reserve constraints are 
considered in this model. 

Provision for demand-side option: Based on available publication, no demand-side 
options/management is considered in this model. 

Methods of handling uncertainty: Prism 2.0 model is a deterministic, mixed-integer linear 
programming model, and does not handle uncertainty endogenously.  Although studies of this 
model based on three cases have been run to have multiple analyses, the US-REGEN model is a 
deterministic model. 

Incorporating Environmental Regulations of Different Cases: The Prism 2.0 project is to 
understand the GHG reduction potentials and also the policy impacts on economic activities. 
Hence the US-REGEN model “aggregates electric power units with similar attributes at the 
regional level” and “use the bottom-up representation of power generation capacity and dispatch 
across a range of intra-annual load segments.” The key inputs and assumptions for the US-
REGEN model include the data regarding economic growth and energy demand and supply from 
EIA’s Annual Energy Outlook 2011, economic data from IMPLAN and electric power unit data 
from Ventyx (2009 and 2010 datasets), electric sector policies, including state renewable 
portfolio standards (December 2011), the Cross-State Air Pollution Rule (CSAPR), and that new 
coal plants only include the units currently under construction. In order to understand different 
situations, three different cases concerning investment costs and regulation implementation 
details are used as the inputs to the US-REGEN model. The three cases are Reference Case, Flex 
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Case, and High Case. Reference case provides a central estimate of the costs and regulation 
details. Flex case is with lower costs and more flexible on the timing for retrofitting SO2, NOx 
and mercury controls. High case is an upper bound estimate, where higher costs and more 
stringent regulations are used. 

For all of three cases, the Prism 2.0 project used EPRI’s IECCOST model to estimate the 
investment and operating costs for retrofitting coal plants which require controls of SO2, NOx 
and Hg. Mercury (Hg) control assumes compliance by 2015 for both High and Reference cases 
and by 2017 for the Flex case. For SO2 control, all three cases assume the generator owner will 
make decisions based on a SO2 limit of 0.15lb/MMBtu. Both Reference and High cases assume 
compliance by 2015, and Flex case by 2017. For NOx control, all three cases assume the 
generator owner will make decisions based on a NOx limit of 0.10/MMBtu. Both Reference and 
High cases assume compliance by 2018, and Flex case by 2020. For cooling water control, all 
three cases assume compliance with the Clear Water Act Section 316(b) by 2018. With the 
additional required expenditure in the power sector, GHG will be effectively reduced, but on the 
other hand this also “leads to higher price for electricity and natural gas, which correspondingly 
reduce economic output.” 

A.II.7.4 Development status and analysis results 

As in the EPRI Prism 2.0 report, the US-REGEN model has been developed and produced 
results to analyze the road map of U.S. GHG reduction. Key results from the Reference Case 
include significant retrofit of the existing coal plants, addition of new nuclear power plants, and 
steady increase of wind generation, and generation expansions are different for different areas 
and inter-regional transmissions are built as well. “The projected composition in 2035 is as 
follows: coal at 28%, natural gas at 25%, nuclear at 21%, renewables 26%.” East and south see 
many retirements of coal units, an increase of natural gas generation, and new renewables in the 
east and nuclear in the south. Midwest sees a great growth of wind generation. West shows lesser 
changes. The results also show that there are 50% and 70% reductions for NOx and SO2 
respectively. CO2 emission continues to decline. The economy-wide impacts of the solutions 
will be between $175 and $275 billion. In addition, the results also shows that solutions of 
generation mix are very sensitive to the volatile natural gas price. 

A.II.7.5 Limitations of the model 

The Prism 2.0 analyses provide a great view of the road map of GHG reduction in the next 20 or 
so years. Although the US-REGEN model is a bottom-up model, it has not included many 
important engineering details of the electrical power systems, such as generator scheduling, 
power flow equations (Kirchhoff’s current and voltage laws), etc. The intra-annual electricity 
demands are not able to model the variations and uncertainty of renewable resources. Energy 
storage and demand side management have not been included to balance the heterogeneous 
variations between renewable availability and demands. However, the costs and availability of 
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technologies are constantly changing over time with high uncertainties. Hence dynamic and 
stochastic models are more appropriate in this respect. 

A.II.8 REMix 

German Aerospace Center DLR has used a geographic information system to assess the 
potentials of renewable energy generation in Europe with high spatial and temporal resolution. 
The results have been used in a model to balance renewable generation and demand, and 
interregional energy flows []. The model, which is used to analyze the new generation mix and 
regional and interregional electricity balance and flows, is the REMix model (Renewable Energy 
Mix for sustainable energy supply in Europe) [115]. This model is in accordance with the Europe 
Energy Policy to have sustainable, secure and competitive energy supplies to help combat 
climate change and reduce reliance on foreign fossil fuel. Because of the existence of 
fluctuations in both renewable energy availability and demand at times, it is necessary to have a 
model to evaluate the potentials to sustain the whole energy system using more renewable 
resources. In the following, details of the REMix model will be discussed and compared, 
including types of investment decisions, model features and computational methods, additional 
planning tool attributes and input assumptions, development status and findings, and model 
limitations. 

A.II.8.1 Types of investment decisions made 

Because of the variation of renewable energy among times and locations, and the fluctuation of 
demands, the decentralized generation mix including both fossil fuel and renewable sources, 
transmission and energy storage are all required to fulfill all criteria aimed by European Union 
Energy Policy. In order to have them done in a cost-efficient way, the questions to ask are: what 
types of generation capacity need to be installed and where; how much storage and transmission 
capacity are needed and where to cover fluctuating demands by fluctuating renewable resources 
at low costs? 

The REMix model includes investment decisions on the generation portfolio (both fossil fuel and 
renewable generators), power transmission between regions and energy storage. Renewable 
resources include solar energy (both photovoltaic and concentrating solar thermal power), wind 
power, hydro power, biomass and geothermal power. Transmission includes both traditional high 
voltage AC and high voltage DC technologies. Energy storage includes pumped-storage hydro 
power, adiabatic compressed air energy storage, and hydrogen energy storage. As this model is a 
static model in terms of capacity expansion, the investment decisions are only associated with 
spatial information but not with temporal information. This means that the investments are made 
only once at the beginning. Once invested (given the new capacities), the remaining part of the 
model is how to perform efficient operations in terms of total cost. 
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A.II.8.2 Model features and computational methods 

The REMix model is a pure linear programming (LP) model with only continuous variables, “in 
order to keep the running time as low as possible.” Its objective is to minimize the total energy 
system cost, including both investment costs and systems’ operating and maintenance costs. The 
model is coded in GAMS and solved by popular LP solvers such as CPLEX. In terms of 
expansion planning, this is a static model. But the operational level problem is capturing 
multiple-year features of the energy systems in terms of the electricity and heat demands. In this 
level, the constraints are standard capacity and demand satisfaction constraints. However, the 
operational decisions across years are not directly related to each other except all coupling with 
the investment decisions. 

Although this model is an LP, which can be solved efficiently by commercial solvers such as 
CPLEX, EXPRESS, etc., the problem instances of REMix are still very challenging. This is 
because it includes large-scale temporal and spatial information. Hourly demands for multiple 
years in 36 European and North African regions/countries are considered in the runs of the 
model. To this end, aggregations and reductions of regions and times are used to reduce the 
computational burden of the large-scale instances. As stated in [115], “depending on the number 
of regions and time steps regarded, the model running times are several hours up to several 
weeks on a server with a 64 bit operating system, 2.8 GHz processor and 32 GB main memory.” 

A.II.8.3 Additional planning tool attributes and model assumptions 

Load duration curve or chronologically ordered load curves: Hourly electricity and heat 
demands from 2010 to 2050 across 36 European and North African regions/countries are used in 
this model. The regions are further divided into 10km by 10km blocks, some of which are the 
conservation or protected areas and then are excluded in its current analyses. Policy goals are 
incorporated in the model by additional constraints. For example, a renewable energy share can 
be set up; for regions, a domestic supply share can be set up. In addition, some variables can be 
preset or bounded by upper and lower limits to ensure the share of renewables and domestic 
supply. Interregional transmission is modeled by the simple transportation constraints instead of 
using the DC or AC current flow representations. This is because the aim of the study is to 
understand the energy flows among the 36 regions, and thus technical details of power 
transmission are not included. 

Network representation and transmission options: The power grid representation is similar to 
a transportation network. It does not consider power flow analysis using Kirchhoff’s current and 
voltage laws.  

Optimization interval: This model is to understand the total amount of installed capacity for 
each generation technologies within the given region. Hence it is a static model. Its operational 
problem is a one-year demand and supply problem by using the transportation model. 
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Application of reserve constraints: Based on the available publication, no reserve constraints 
are considered in this model. 

Provision for demand-side option: Based on the available publication, no demand-side 
options/management is considered in this model. 

Methods of handling uncertainty: This is a deterministic linear programming model, which 
does not include uncertainty. 

A.II.8.4 Development status and findings 

This model has been fully developed before 2012, and details are discussed in Dr. Scholz’s PhD 
dissertation. As this model is capturing the features of multiple-region energy system and there 
exist high variations among different renewable resources and heterogeneous electricity and heat 
demands among regions, transmission expansion or build-up is a crucial element of a low-cost 
and renewable-energy-based energy supply and demand system. Although the results show that 
it is very important and necessary to have international/interregional cooperation to reach the 
cost-minimal energy system, it might not be directly applicable due to political or other reasons. 
Hence, the REMix model also considers this aspect by limiting the transmission. Both whole-
networked and island-constrained instances have been run to obtain some insights. It is certain 
the total cost is lower in the whole-networked system. Depending on the regions’ locations, 
certain region island-constrained electricity costs can be much higher than, or a little higher than, 
or even lower than the whole-networked case. In addition, [115] reported that the model results 
are very sensitive to the parameter changes. 

A.II.8.5 Limitations of the Model 

As is stated in Error! Reference source not found., a stochastic model is more realistic for this 
study since the renewable energy availability is very uncertain. However, due to computational 
reasons, the model only captures the deterministic features. A stochastic model along with more 
advanced computational techniques is expected to obtain more robust and realistic optimal 
solutions. The REMix model in essence is a static model in terms of expansion investments. 
However, the costs and availability of technologies are constantly changing over time with high 
uncertainties. Hence dynamic and stochastic models are more appropriate in this respect. Again, 
it has to come with strong computational tools capable of solving instances with realistic sizes. 
Another limitation of this model is that expansions are considered as continuous variables. In 
reality, some of the investment decisions are discrete, which denote whether some investment are 
made and cannot be continuous. Hence multistage stochastic mixed integer programming models 
are more appropriate. 



 193 

A.II.9 LIMES 

LIMES is a long-term power system model developed by researchers at Potsdam Institute for 
Climate Impact Research (PIK). It is built from a social planners’ perspective to minimize 
overall power system costs, including the costs of power generation and transmission 
investments, fuel, and O&M. It is formulated as a linear program (without uncertainties) through 
GAMS and is solved by the CPLEX solver [45, 46, 96]. 

A.II.9.1 Types of investment decisions made 

The LIMES model is a power-sector-only model. It endogenously determines the capacity 
expansions of generation, transmission and energy storage resources, as well as short-term 
electricity dispatch level. The generation resources include renewable energy. Based on the 
publicly available documents, LIMES does not include investment decisions on demand-side 
resources.  

A.II.9.2 Features and computational methods of model optimizer 

The salient feature of the LIMES model is its usage of time slices to realize the multiscale 
modeling of both long-term planning and short-term dispatch operations of power systems. The 
model is a multi-period, deterministic, linear programming model.  

A.II.9.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: The LIMES model uses the 
concept of time slices (a variation of the load duration curve). Within each calendar year, four 
seasons are modeled. In each season, three representative days are chosen to respectively 
represent three renewable supply regimes: low, medium and high. Within each of such days, 4 
time slices are modeled, with each slice being the average load of a period of six hours. In 
addition to the 48 time slices (4 slices/day × 3 days/season × 4 seasons/year) in a year, one more 
slice is included in the model to represent a super-peak period. Hence, total of 49 time slices (and 
correspondingly, 49 supply-demand balancing constraints) are modeled in each year within the 
planning horizon.  

Network representation and transmission options: The grid representation in LIMES model is 
similar to a transportation network. It does not consider power flow distribution effects.  

Depreciation and end-period effects: A salvage value approach is used to avoid the end effects 
in the model. Salvage values are calculated as a percentage of the investment costs, with the 
investment time of new capacities explicitly considered in the calculation; namely, the later 
capacity is built, the higher salvage value it has.  

Modeling of operational and maintenance costs: Both fixed and variable O&M costs of each 
technology are considered in the model. Fixed O&M costs of a particular technology are given as 
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a percentage of its investment costs per year. Marginal costs are assumed to be constants and are 
given through input data. 

Optimization interval: The optimization model builds upon a multi-scale structure, in while 
investment intervals are years, while short-term operational decisions are made by time slices.  

Application of reserve constraints: Based on publicly available documents of LIMES, there are 
no reserve constraints in the model.  

Provision for demand-side option: Currently there are no demand-side options available in 
LIMES.  

Methods of handling uncertainty: Since the LIMES model is a deterministic linear 
programming model, uncertainties are not endogenously considered in the model when 
investment or operational decisions are made. However, in preparing input data to the 
deterministic model, the time-slice concept is used to simulate the fluctuation of renewable 
resources’ outputs and demand. For wind (on-shore and off-shore) and solar plants (PV and 
CSP), the fluctuation of the resources’ outputs is reflected in their capacity factors, which are 
input data, but have different values at different time slices. 

Historical meteorological data are collected and the conversion from such data to capacity 
factors of the corresponding renewable power plants are through established mathematical 
formula in literature, as documented in [45]. Load variations across time slices are calculated 
through historical load data, but scaled to match the projected load growth rate.  

A.II.9.4 Development status, previous applications and associated typical run times 

The LIMES model has been utilized to analyze the power systems in Europe and Middle 
East/North Africa (MENA) regions [45]. The model, together with the regional database, is 
referred to as the LIMES-EU+ model. This model includes EU-27 member countries, Norway, 
Switzerland, and the Middle Eastern and North American countries surrounding the 
Mediterranean Sea. They are represented as 20 geographical regions in the model, and are 
connected by 32 transmission corridors. Nine generation technologies are included in the model: 
coal, natural gas, nuclear, biomass, IGCC, hydro, wind (onshore/offshore), photovoltaic (PV) 
and concentrating solar power (CSP). The planning horizon is from 2010 to 2050. No 
information is publicly available about the solving time of the resulting LIMES-EU+ model. 

A.II.9.5 Limitations and challenges 

The main limitation of the model lies in its time representation in the finer time scale, which only 
uses aggregate hours in representative days. Such a structure cannot capture extreme events or 
finer time scale fluctuations of renewables and demand. In addition, the model cannot handle 
uncertainties explicitly, and hence is only useful for scenario-based analyses.  
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A.II.10 SWITCH 

The SWITCH model – a loose acronym for Solar, Wind, Hydro, and Conventional generation 
and Transmission Investment – is a long-term power system capacity expansion model 
developed at University of California, Berkeley.  

A.II.10.1 Types of investment decisions made 

Investment decisions in the SWITCH model include new generation (including distributed 
generation), storage, and high-voltage transmission lines. 

A.II.10.2 Features and computational methods of model optimizer 

The SWITCH model is a mixed-integer linear programming model (MILP). The integer 
variables are of binary form only, and arise from the decisions of whether existing units in a 
particular planning period should be operated or not. The model is coded through the modeling 
language AMPL, and uses CPLEX as the optimization solver. For the study of the WECC power 
system, the SWITCH model results in a MILP of approximately 800,000 constraints, 800,000 
linear decision variables, and 2000 binary variables. 

A.II.10.3 Summary of additional planning tool attributes 

Load duration curve or chronologically ordered load curves: The SWITCH model uses a 
similar approach to model short-term system operation as in PIK’s LIMES model. Within an 
investment period (that may be of one or multiple years), two days are selected for each month 
for a total of 12 months. Within each day, 6 hours are selected, which result in a total of 144 
sampled hours (6 hours/day × 2 days/month × 12 months) per investment period. 

Network representation and transmission options: The SWITCH model represents the 
electric grid as a transportation model. It does not consider Kirchhoff’s Laws and does not 
include power flow analysis.  

Depreciation and end-period effects: The SWITCH model amortizes the capital costs of new 
investment over its specified book life, instead of the modeled planning horizon, to avoid the 
end-period effect.  

Modeling of operational and maintenance costs: Both fixed and variable O&M costs are 
considered in SWITCH model.  

Optimization interval: The SWITCH model considers two different time scales. On the 
planning level, the optimization interval is by years, or by planning periods (with a planning 
period possibly contains multiple years). On the operation level (i.e., the economic dispatch 
level), the optimization interval is by hours. But only the selected hours within each planning 
period are considered, as described above.  
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Application of reserve constraints: The SWITCH model contains a reserve margin constraint 
to ensure long-term resource adequacy. Modeling of short-term ancillary services is not done 
currently in SWITCH, but is under development.  

Provision for demand-side option: Based on publicly available documents, no demand-side 
options are available in the SWITCH model.  

Methods of handling uncertainty: SWITCH is a deterministic, mixed-integer linear 
programming model, and does not handle uncertainty endogenously.  

A.II.10.4 Development status, previous applications and associated typical run times 

SWITCH model has been used to analyze the power system of western North America (WECC). 
The analysis is done for years 2014 to 2029. A total of 124 existing and new transmission 
corridors are modeled in the study. Total of 5 different cases are constructed for scenario-based 
analysis. The study results are documented in [96].  

A.II.10.5 Limitations and challenges 

As the SWITCH model shares similarities with the PIK’s LIMES model in several key modeling 
approaches, including its deterministic nature, network and load representation and short-term 
operation modeling, all the limitations and challenges faced by the LIMES model are also shared 
by the SWITCH model.  

A.II.11 GENTEP   

The Illinois Institute of Technology’s (IIT) software tool for the stochastic co-optimization of 
generation and transmission expansion planning (referred to as GENTEP) in electric power 
systems explores various alternatives for enhancing the power system economics and reliability 
while accommodating the inherently random characteristics of the future power grid, especially 
those caused by the large-scale penetration of renewable energy, widespread implementation of 
microgrids, and the additional utilization of capacity-based demand response [65]. GENTEP 
represents a unique and innovative power system expansion planning tool for several reasons. 
GENTEP considers:  

1. a large-scale market-based co-optimization of generation and transmission planning 
rather than the traditional decoupled (staged, transmission-only, generation-only, etc.) 
planning.  

2. a stochastic mixed-integer linear programming approach in which the uncertainties in 
load and renewable energy as well as forced outage rates of system components are 
considered.  
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3. a microgrid-based regional planning in congested and less accessible transmission zones 
as an alternative to the large-scale generation and transmission expansion planning.  

4. a capacity-based demand response of aggregated loads as a coordinated planning 
alternative for deferring the large-scale expansion of generation and transmission systems.  

GENTEP applications will address such critical questions as: How much transmission capacity 
would be needed to economically and reliably deliver the energy produced by a wind farm with a 
typical installed capacity of 1,000MW? How much backup generation capacity would need to be 
planned to reliably operate a power system with a 60% renewable energy penetration? How 
much of co-optimized generation and transmission capacity would need to be planned to support 
a microgrid with a 30MW peak demand, 20MW of gas turbine generation, 10MW of wind 
energy turbines, and storage capacity of 5MW? How much of generation and transmission 
capacity could be saved at the planning stage when considering a load aggregator with a 100MW 
peak demand and a potential for 20% demand response? Is it more economical/ reliable to invest 
in remotely located large-scale generating stations and additional long distance HVDC/AC 
transmission for delivery or is it more justifiable to invest in locally distributed generation and 
multiple microgrids with small generators? 

Figure A.II-3 shows the inputs, the engine, and the outputs of GENTEP. On the input side, loads 
with or without demand response options could be aggregated. Microgrids equipped with local 
generation (renewable and/or non-renewable) and large-scale storage would act as loads in most 
cases. However, they could also provide energy to the grid under certain conditions. To supply 
the increase in aggregated loads or those of microgrids, the RTO/ISO should plan a proper mix 
of generation and transmission technologies. Renewable energy could contribute to the 
generation mix depending on their locations and profiles. When renewable energy constitutes a 
significant percentage of the total generation supply, it has to be backed up by a certain amount 
of conventional and controllable generation technologies such as gas turbines. To connect the 
generation supply to the load requested by aggregators and microgrids, the RTO/ISO should also 
plan a proper mix of transmission capabilities including HVDC/AC transmission.  

GENTEP will also consider other inputs including the minimum reliability criteria, demand and 
fuel price forecasts, and regulatory policies. The GENTEP algorithm will execute a stochastic 
co-optimization of generation and transmission planning, microgrid planning, and capacity-based 
demand response for calculating the minimum total of investment cost, operation cost, and 
unserved energy cost, as shown in Figure A.II-4. The stochastic optimization will rely on 
scenario analyses for representing the demand, capacity-based demand response, and generation 
and transmission.  

The input/output of GENTEP uses the Oracle database, and GENTEP solves the mixed integer 
linear programming problem by using CPLEX. 
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Figure A.II-3. GENTEP input, engine and output 

 

Figure A.II-4. Resource planning alternatives for serving the annual load 

A graphical illustration of the GENTEP planning problem is shown in Figure A.II-5. The entire 
planning problem is solved by decomposing it into a master planning problem, a reliability 
subproblem, and an operation subproblem. The most unique feature of GENTEP is that it 
provides a proactive optimization-based solution, rather than a heuristic or experience-based 
approach on selecting potential generation, transmission, microgrid, and capacity-based demand 
response alternatives, that optimizes investment strategies along with operation and reliability 
constraints. The input information are categorized into various types of generating units, various 
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transmission elements including HVDC transmission, and demand response, and output 
information include commitment and dispatch of generating units, transmission flows and 
controls. 

 

Figure A.II-5. Co-optimization planning model of GENTEP 

 

Appendix III.  Computational Algorithms for Large-scale Co-optimization Models  

A.III.1 Benders Decomposition 

This appendix gives an introduction to Benders decomposition, whose potentials, benefits, limits 
and applications in large-scale co-optimization models are discussed in Section 2.3. Given the 
following problem [P], 

[P]:  Minimize 𝐸𝐸𝑇𝑇𝑥𝑥 + 𝐸𝐸𝑇𝑇𝑗𝑗 

subject to 𝑥𝑥 ∈ 𝑋𝑋 

 𝐴𝐴𝑥𝑥 + 𝐵𝐵𝑗𝑗 ≥ 𝐿𝐿 

 𝑗𝑗 ≥ 0 

When solving [P] is much harder than solving problem involving only x or y individually, we 
can choose to break down the problem to two problems: the restricted master problem [RMP] 
and subproblem [SP], which are both shown as follows, 
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[RMP]:  Minimize 𝐸𝐸𝑇𝑇𝑥𝑥 + 𝜋𝜋 [SP]:  Minimize 𝐸𝐸𝑇𝑇  𝑥𝑥� + 𝐸𝐸𝑇𝑇𝑗𝑗 

subject to 𝑥𝑥 ∈ 𝑋𝑋 subject to 𝐵𝐵𝑗𝑗 ≥ 𝐿𝐿 − 𝐴𝐴𝑥𝑥� 

 𝜋𝜋 ≥ �̂�𝜇𝑘𝑘𝑇𝑇(𝐿𝐿 − 𝐴𝐴𝑥𝑥)  𝑗𝑗 ≥ 0 

where 𝑥𝑥� is a solution of [RMP] and �̂�𝜇𝑘𝑘𝑇𝑇  is an optimal dual solution corresponding to the first 
constraint of [SP]. In the above we assume [SP] is always feasible since we always can add 
artificial variables with huge penalties to make it happen. Benders decomposition solves these 
two problems iteratively until the upper bound (optimal objective value of [RMP]) meets or gets 
very close to lower bound (optimal objective value of [SP]) [121]. The steps of the algorithm is 
shown as follows, 

Step 1: Initialization of a feasible  𝑥𝑥� ∈ 𝑋𝑋; 

Step 2: Solve [SP], obtain the optimal primal and dual solutions (𝑗𝑗�, �̂�𝜇); 

 Update upper bound if 𝐸𝐸𝑇𝑇𝑥𝑥� + 𝐸𝐸𝑇𝑇𝑗𝑗� is smaller than the incumbent; 

Step 3: Add a Benders’ cut as in [RMP] by using �̂�𝜇; 

 Solve [RMP], and update lower bound by the new optimal objective value; 

Step 4: Compare upper bound and lower bound if convergence criterion is met; 

 If so, stop; otherwise, go back to Step 2. 

A.III.2 Column Generation Algorithm 

This appendix gives an introduction to column generation algorithm, whose potentials, benefits, 
limits and applications in large-scale co-optimization models are discussed in Section 2.3. 
Column Generation (CG) algorithm is based on a convex analysis theorem that any point in a 
convex set can be represented by a convex combination of some extreme points of the convex set. 
For example, instead of using the constraints defining the whole convex set X, we only use some 
of its extreme points. The restricted master problem then uses the convexity variables (𝜆𝜆𝑗𝑗  ) 
instead of the original variable x. Still considering the original problem [P] in Benders 
decomposition, the restricted master problem is shown as follows, 
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[CG-RMP]:  Minimize ��𝐸𝐸𝑇𝑇𝑥𝑥𝑗𝑗 �𝜆𝜆𝑗𝑗
𝑗𝑗

 + 𝐸𝐸𝑇𝑇𝑗𝑗  

subject to ��𝐴𝐴𝑥𝑥𝑗𝑗 �𝜆𝜆𝑗𝑗
𝑗𝑗

+ 𝐵𝐵𝑗𝑗 ≥ 𝐿𝐿  

 �𝜆𝜆𝑗𝑗
𝑗𝑗

= 1  

 𝑗𝑗 ≥ 0  

When x are binary or discrete variables, 𝜆𝜆’s need to be restricted as binary variables as well. The 
restricted master problem keeps adding the most promising (with the most reduced cost) columns, 
which are obtained by solving the subproblems. When the same structure is experienced as in 
Figure A.III-1, there are many convex sets, 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 . These convex sets are not related to 
each other, and then the subproblems can be solved individually when the dual solutions of the 
restricted master problem are known. Each of them is a much easier problem to solve. The 
master problem with multiple subproblems is shown as the following figure, 

 

Figure A.III-1. Restricted master problem with multiple subproblems in parallel 
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