1/26/24, 2:13 PM nlcd l48_v1.xml

This XML file does not appear to have any style information associated with it. The document tree is shown

```
<metadata>
 <idinfo>
   <citation>
     <citeinfo>
       <origin>U.S. Geological Survey</origin>
       <origin>Jon Dewitz</origin>
       <title>National Land Cover Database (NLCD) 2021 Land Cover Conterminous United States</title>
       <geoform>remote-sensing image/geoform>
       <serinfo>
         <sername>None</sername>
         <issue>None</issue>
       </serinfo>
       <publiches.
         <pubplace>Sioux Falls, SD</pubplace>
         <publish>U.S. Geological Survey</publish>
       </pubinfo>
       <onlink>https://doi.org/10.5066/P9JZ7A03</onlink>
       <onlink>https://www.mrlc.gov/data</onlink>
       <onlink>https://www.mrlc.gov/data-services-page</onlink>
       <lworkcit>
         <citeinfo>
          <origin>Yang, L., et al.</origin>
          <pubdate>201812</pubdate>
          <title>A new generation of the United States National Land Cover Database: Requirements,
          research priorities, design, and implementation strategies</title>
          <edition>ISPRS Journal of Photogrammetry and Remote Sensing 146: 108-123.
          <geoform>publication
          <onlink>https://doi.org/10.1016/j.isprsjprs.2018.09.006/onlink>
       </lworkcit>
     </citeinfo>
   </citation>
   <descript>
     <abstract>The U.S. Geological Survey (USGS), in partnership with several federal agencies, has
     now developed and released seven National Land Cover Database (NLCD) products: NLCD 1992, 2001,
     2006, 2011, 2016, 2019, and 2021. Beginning with the 2016 release, land cover products were
     created for two-to-three-year intervals between 2001 and the most recent year. These products
     provide spatially explicit and reliable information on the Nation's land cover and land cover
     change. NLCD continues to provide innovative, consistent, and robust methodologies for
     production of a multi-temporal land cover and land cover change database. NLCD 2021 adds an
     additional year to the map products produced for NLCD 2019, with a streamlined compositing
     process for assembling and preprocessing Landsat imagery and geospatial ancillary datasets; a
     temporally, spectrally, and spatially integrated land cover change analysis strategy; a theme-
     based post-classification protocol for generating land cover and change products; a continuous
     fields biophysical parameters modeling method; and a scripted operational system. The overall
     accuracy of the 2019 Level I land cover was 91%. Results from this study confirm the robustness
     of this comprehensive and highly automated procedure for NLCD 2021 operational mapping (see
     https://doi.org/10.1080/15481603.2023.2181143 for the latest accuracy assessment publication).
     Questions about the NLCD 2021 land cover product can be directed to the NLCD 2021 land cover
     mapping team at USGS EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov. See included
     spatial metadata for more details. </abstract>
     <purpose>The goal of this project is to provide the Nation with complete, current, and
     consistent public domain information on its land use and land cover.</purpose>
     <supplinf>Corner Coordinates (center of pixel, projection meters) Upper Left Corner: -2493045
     meters(X), 3310005 meters(Y) Lower Right Corner: 2342655 meters(X), 177285 meters(Y)/supplinf>
   </descript>
   <timeperd>
     <timeinfo>
       <rngdates>
         <br/><begdate>2001</begdate>
```

```
<enddate>2021</enddate>
   </rngdates>
 </timeinfo>
 <current>ground condition</current>
</timeperd>
<status>
 cprogress>In work
 <update>Every 2-3 years
</status>
<spdom>
 <bounding>
   <westbc>-130.2328</westbc>
   <eastbc>-63.6722</eastbc>
   <northbc>52.8510</northbc>
   <southbc>21.7423</southbc>
 </bounding>
</spdom>
<keywords>
 <theme>
   <themekt>ISO 19115 Topic Category</themekt>
   <themekey>imageryBaseMapsEarthCover</themekey>
   <themekey>biota</themekey>
 </theme>
 <theme>
   <themekt>NGDA Portfolio Themes</themekt>
   <themekey>NGDA</themekey>
   <themekey>National Geospatial Data Asset</themekey>
   <themekey>Land Use Land Cover Theme</themekey>
 </theme>
 <theme>
   <themekt>USGS Thesaurus</themekt>
   <themekey>Land cover</themekey>
   <themekey>Image processing</themekey>
   <themekey>GIS</themekey>
   <themekey>U.S. Geological Survey (USGS)</themekey>
   <themekey>digital spatial data</themekey>
 </theme>
 <theme>
   <themekt>U.S. Department of Commerce, 1995, (Countries, dependencies, areas of special
   sovereignty, and their principal administrative divisions, Federal Information Processing
   Standard 10-4): Washington, D.C., National Institute of Standards and Technology</themekt>
   <themekey>United States</themekey>
   <themekey>U.S.</themekey>
   <themekey>US</themekey>
 </theme>
 <place>
   <placekt>Common Geographic Areas</placekt>
   <placekey>United States</placekey>
 </place>
</keywords>
<accconst>None. Please see 'Distribution Info' for details.</accconst>
<useconst>None. Users are advised to read the dataset's metadata thoroughly to understand
appropriate use and data limitations.</useconst>
<ptcontac>
 <cntinfo>
   <cntorgp>
     <cntorg>U.S. Geological Survey</cntorg>
   </cntorgp>
   <cntpos>Customer Service Representative</cntpos>
   <cntaddr>
     <addrtype>mailing and physical</addrtype>
     <address>47914 252nd Street</address>
     <city>Sioux Falls</city>
     <state>SD</state>
     <postal>57198-0001</postal>
```

```
<country>USA</country>
       </cntaddr>
       <cntvoice>(605) 594-6151</cntvoice>
       <cntemail>custserv@usgs.gov</cntemail>
   </cntinfo>
</ptcontac>
<datacred>U.S. Geological Survey</datacred>
<secinfo>
   <secsys>None</secsys>
   <secclass>Unclassified</secclass>
   <sechandl>N/A</sechandl>
</secinfo>
<native>Microsoft Windows 10; ESRI ArcGIS Pro 3.1, ERDAS Imagine (alternative)/native>
<crossref>
   <citeinfo>
       <origin>Suming Jin</origin>
       <origin>Collin Homer</origin>
       <origin>Limin Yang</origin>
       <origin>Patrick Danielson</origin>
       <origin>Jon Dewitz</origin>
       <origin>Congcong Li</origin>
       <origin>Zhe Zhu</origin>
       <origin>George Xian</origin>
       <origin>Danny Howard</origin>
       <pubdate>20191211</pubdate>
       <title>Overall Methodology Design for the United States National Land Cover Database 2016
       Products</title>
       <geoform>publication</geoform>
       <serinfo>
           <sername>Remote Sensing</sername>
           <issue>vol. 11, issue 24</issue>
       </serinfo>
       <publication < publication < p
           <pubplace>n/a</pubplace>
           <publish>MDPI AG</publish>
       </pubinfo>
       <othercit>ppg. 2971</othercit>
       <onlink>https://doi.org/10.3390/rs11242971</onlink>
   </citeinfo>
</crossref>
<crossref>
   <citeinfo>
       <origin>Suming Jin</origin>
       <origin>Jon Dewitz</origin>
       <origin>Patrick Danielson</origin>
       <origin>Brian Granneman</origin>
       <origin>Catherine Costello</origin>
       <origin>Kelcy Smith</origin>
       <origin>Zhe Zhu</origin>
       <pubdate>20230221</pubdate>
       <title>National Land Cover Database 2019: A New Strategy for Creating Clean Leaf-On and Leaf-
       Off Landsat Composite Images</title>
       <geoform>publication</geoform>
           <sername>Journal of Remote Sensing</sername>
           <issue>vol. 3</issue>
       </serinfo>
       <publiches
           <pubplace>n/a</pubplace>
           <publish>American Association for the Advancement of Science (AAAS)/publish>
       <onlink>https://doi.org/10.34133/remotesensing.0022</onlink>
   </citeinfo>
</crossref>
<crossref>
```

```
<citeinfo>
     <origin>Suming Jin</origin>
     <origin>Jon Dewitz</origin>
     <origin>Congcong Li</origin>
     <origin>Daniel Sorenson</origin>
     <origin>Zhe Zhu</origin>
     <origin>Md Rakibul Islam Shogib</origin>
     <origin>Patrick Danielson</origin>
     <origin>Brian Granneman</origin>
     <origin>Catherine Costello</origin>
     <origin>Adam Case</origin>
     <origin>Leila Gass</origin>
     <title>National Land Cover Database 2019: A Comprehensive Strategy for Creating the 1986-2019
     Forest Disturbance Product</title>
     <geoform>publication</geoform>
       <sername>Journal of Remote Sensing</sername>
       <issue>vol. 3</issue>
     </serinfo>
     <publiches
       <pubplace>n/a</pubplace>
       <publish>American Association for the Advancement of Science (AAAS)/publish>
     <onlink>https://doi.org/10.34133/remotesensing.0021</onlink>
   </citeinfo>
 </crossref>
</idinfo>
<dataqual>
 <attracc>
   <attraccr>A formal accuracy assessment has not been conducted for NLCD 2021 Land Cover, NLCD
   2021 Land Cover Change, or NLCD 2021 Impervious Surface products. A 2019 accuracy assessment
   publication can be found here: James Wickham, Stephen V. Stehman, Daniel G. Sorenson, Leila
   Gass & Jon A. Dewitz (2023) Thematic accuracy assessment of the NLCD 2019 land cover for the
   conterminous United States, GIScience & Remote Sensing, 60:1, DOI:
   10.1080/15481603.2023.2181143. </attraccr>
   <aattracc>
     <attraccv>Unknown</attraccv>
     <attracce>This document and the described land cover map are considered "provisional" until a
     formal accuracy assessment is completed. The U.S. Geological Survey can make no guarantee as
     to the accuracy or completeness of this information, and it is provided with the
     understanding that it is not guaranteed to be correct or complete. Conclusions drawn from
     this information are the responsibility of the user.</attracce>
   </gattracc>
 </attracc>
 <le><logic>See https://www.mrlc.gov/data for the full list of products available.</logic>
 <complete>This NLCD product is the version dated June 30, 2023.
   <horizpa>
     <horizpar>N/A</horizpar>
   </horizpa>
   <vertacc>
     <vertaccr>N/A</vertaccr>
   </vertacc>
 </posacc>
 lineage>
   <srcinfo>
     <srccite>
       <citeinfo>
        <origin>U.S. Geological Survey</origin>
        <pubdate>20200408</pubdate>
        <title>Landsat—Earth Observation Satellites</title>
         <geoform>raster digital data/geoform>
         <othercit>https://www.usgs.gov/core-science-systems/nli/landsat/landsat-5?qt-
        science_support_page_related_con=0#qt-science_support_page_related_con </othercit>
```

1/26/24, 2:13 PM nlcd_l48_v1.xml

```
<onlink>https://doi.org/10.3133/fs20153081</onlink>
       </citeinfo>
   </srccite>
   <typesrc>Digital and/or Hardcopy</typesrc>
   <srctime>
       <timeinfo>
           <rngdates>
               <br/><begdate>1984</begdate>
               <enddate>2021</enddate>
           </rngdates>
       </timeinfo>
       <srccurr>ground condition</srccurr>
   </srctime>
   <srccitea>Landsat Products</srccitea>
   <srccontr>Landsat Multispectral Scanner (MSS), Landsat Thematic Mapper (TM), Landsat Enhanced
   Thematic Mapper Plus (ETM+), Landsat Operational Land Imager (OLI), Landsat Analysis Ready
   Data (ARD) </srccontr>
</srcinfo>
<srcinfo>
   <srccite>
       <citeinfo>
           <origin>LANDFIRE</origin>
           <origin>USGS 3D Elevation Program (3DEP)</origin>
           <title>LF 2020 Update Elevation products</title>
           <geoform>raster digital data/geoform>
           <othercit>https://landfire.gov/index.php</othercit>
           <onlink>https://landfire.gov/elevation.php</onlink>
       </citeinfo>
   </srccite>
   <typesrc>Digital and/or Hardcopy</typesrc>
   <srctime>
       <timeinfo>
           <sngdate>
               <caldate>2020</caldate>
           </sngdate>
       </timeinfo>
       <srccurr>ground condition</srccurr>
   </srctime>
   <srccitea>DEM</srccitea>
   <srccontr>Digital Elevation Model (DEM)</srccontr>
</srcinfo>
<srcinfo>
   <srccite>
       <citeinfo>
           <origin>U.S. Department of Agriculture (USDA) National Agricultural Statistics Service
           (NASS) </origin>
           <publication <pre><publication</pre>
           <title>Cropland Data Layer</title>
           <geoform>raster digital data/geoform>
           <othercit>https://nassgeodata.gmu.edu/CropScape/</othercit>
           <onlink>https://www.nass.usda.gov/Research and Science/Cropland/SARS1a.php</onlink>
       </citeinfo>
   </srccite>
   <typesrc>Digital and/or Hardcopy</typesrc>
   <srctime>
       <timeinfo>
           <rngdates>
               <br/>

               <enddate>2020</enddate>
           </rngdates>
       </timeinfo>
       <srccurr>observed</srccurr>
   </srctime>
   <srccitea>Cropland Data Layer (CDL)</srccitea>
```

1/26/24, 2:13 PM nlcd_l48_v1.xml

```
<srccontr>Data on cultivated crops and confidence indices, available annually for 2008 to
 2020 from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service
 (NASS). </srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>U.S. Fish and Wildlife Service</origin>
     <publication <pre><publication</pre>
     <title>National Wetlands Inventory</title>
     <geoform>vector digital data/geoform>
     <othercit>https://www.fws.gov/wetlands/Data/Web-Map-Services.html </othercit>
     <onlink>https://www.fws.gov/wetlands/Data/Data-Download.html </onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <rngdates>
       <br/><begdate>1977</begdate>
       <enddate>2021</enddate>
     </rngdates>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>National Wetlands Inventory (NWI)</srccitea>
 <srccontr>The U.S. Fish and Wildlife Service's National Wetlands Inventory (NWI) provides
 detailed information on the abundance, characteristics, and distribution of wetlands in the
 United States. </srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>National Cooperative Soil Survey</origin>
     <publication <pre><publication</pre>
     <title>Soil Survey Geographic (SSURGO) Database</title>
     <geoform>vector digital data/geoform>
     <onlink>https://gdg.sc.egov.usda.gov/</onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <sngdate>
       <caldate>2019</caldate>
     </sngdate>
   </timeinfo>
   <srccurr>observed</srccurr>
 <srccitea>Soil Survey Geographic (SSURGO) Database </srccitea>
 <srccontr>The SSURGO database contains information about soil as collected by the National
 Cooperative Soil Survey. The information was collected in map units at scales ranging from
 1:12,000 to 1:63,360. SSURGO datasets consist of map data, tabular data, and information
 about how the maps and tables were created. </srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>USDA Natural Resources Conservation Service (NRCS) </origin>
     <publication <pre><publication</pre>
     <title>State Soil Geographic (STATSGO2) Database</title>
     <geoform>vector digital data/geoform>
     <onlink>https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm</onlink>
   </citeinfo>
 </srccite>
```

```
<typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <sngdate>
       <caldate>2019</caldate>
     </sngdate>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>State Soil Geographic (STATSGO2) Database </srccitea>
 <srccontr>The USDA Natural Resources Conservation Service (NRCS) STATSGO2 database is a
 broad-based inventory of soils and non-soil areas, and is designed for broad planning and
 management uses covering state, regional, and multi-state areas. </srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>NOAA Office for Coastal Management </origin>
     <publication <pre><publication</pre>
     <title>Coastal Change Analysis Program (C-CAP)</title>
     <geoform>application/service</geoform>
     <onlink>https://coast.noaa.gov/digitalcoast/tools/lca.html</onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <sngdate>
       <caldate>2019</caldate>
     </sngdate>
   </timeinfo>
   <srccurr>observed</srccurr>
 <srccitea>C-CAP land cover</srccitea>
 <srccontr>This online data viewer provides user-friendly access to coastal land cover and
 land cover change information developed through NOAA's Coastal Change Analysis Program (C-
 CAP). </srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>USDA Natural Resources Conservation Service</origin>
     <pubdate>2019</pubdate>
     <title>Hydric Soils database</title>
     <geoform>vector digital data/geoform>
     <onlink>https://data.nal.usda.gov/dataset/soil-use-hydric-soils-database </onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <sngdate>
       <caldate>2019</caldate>
     </sngdate>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>hydric soils dataset</srccitea>
 <srccontr>Hydric soils are defined as those soils that are sufficiently wet in the upper part
 to develop anaerobic conditions during the growing season. The Hydric Soils section presents
 the most current information about hydric soils. The lists of hydric soils were created by
 using National Soil Information System (NASIS) database selection criteria that were
 developed by the National Technical Committee for Hydric Soils. </srccontr>
</srcinfo>
<srcinfo>
```

```
<srccite>
     <origin>U.S. Geological Survey</origin>
     <origin>USDA Forest Service</origin>
     <publication <pre><publication</pre>
     <title>Monitoring Trends in Burn Severity (MTBS)</title>
     <geoform>raster digital data/geoform>
     <onlink>https://www.mtbs.gov/</onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <rngdates>
       <br/><begdate>1984</begdate>
       <enddate>2021</enddate>
     </rngdates>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>MTBS</srccitea>
 <srccontr>MTBS burn severity</srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>U.S. Department of Interior (DOI) Office of Wildland Fire </origin>
     <origin>U.S. Department of Agriculture (USDA) Forest Service (USFS) Fire and Aviation
     Management </origin>
     <origin>U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS)
     Center </origin>
     <origin>The Nature Conservancy (TNC) North America Science Team </origin>
     <origin>The Nature Conservancy (TNC) North America Science Team </origin>
     <origin>USDA Forest Service Forest Inventory and Analysis (FIA) </origin>
     <publication <pre><publication</pre>
     <title>LANDFIRE (LF)</title>
     <geoform>vector digital data/geoform>
     <onlink>https://www.landfire.gov/</onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <rngdates>
       <br/><begdate>1999</begdate>
       <enddate>2020</enddate>
     </rngdates>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>LANDFIRE</srccitea>
 <srccontr>LF1999 through LF2020 areas of vegetation, fuels, fire regimes, and disturbances
 </srccontr>
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>U.S. Geological Survey</origin>
     <origin>Bureau of Land Management
     <publication <pre><publication</pre>
     <title>Rangeland Condition Monitoring Assessment and Projection, 1985-2021</title>
     <geoform>raster digital data/geoform>
     <othercit>https://www.mrlc.gov/sites/default/files/2023-01/V5%20RCMAP%20Factsheet.pdf
     </othercit>
     <onlink>https://www.mrlc.gov</onlink>
```

```
</citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <rngdates>
       <br/><begdate>1985</begdate>
       <enddate>2021</enddate>
     </rngdates>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>RCMAP</srccitea>
 <srccontr>RCMAP shrub areas
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>USDA Forest Service</origin>
     <origin>MRLC consortium</origin>
     <publication <pre><publication</pre>
     <title>Tree Canopy Cover (TCC)</title>
     <geoform>raster digital data/geoform>
     <othercit>https://www.mrlc.gov/sites/default/files/TCC_Project_Overview_Brochure-
     MRLC 2020-06-05.pdf </othercit>
     <onlink>https://www.mrlc.gov</onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <sngdate>
       <caldate>2016</caldate>
     </sngdate>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>Tree Canopy</srccitea>
 <srccontr>USDA Forest Service canopy 2016 data
</srcinfo>
<srcinfo>
 <srccite>
   <citeinfo>
     <origin>U.S. Geological Survey</origin>
     <origin>MRLC consortium</origin>
     <pubdate>2019</pubdate>
     <title>The National Land Cover Database (NLCD)</title>
     <geoform>raster digital data/geoform>
     <onlink>https://www.mrlc.gov</onlink>
   </citeinfo>
 </srccite>
 <typesrc>Digital and/or Hardcopy</typesrc>
 <srctime>
   <timeinfo>
     <sngdate>
       <caldate>2019</caldate>
     </sngdate>
   </timeinfo>
   <srccurr>observed</srccurr>
 </srctime>
 <srccitea>NLCD 2019</srccitea>
 <srccontr>NLCD 2019 Land Cover products
</srcinfo>
cstep>
```

1/26/24, 2:13 PM nlcd I48 v1.xml

```
cdesc>Landsat imagery processing - The National Land Cover Database (NLCD) is
 fundamentally based on the analysis of Landsat data. Beginning with NLCD 2019, we used
 composite images rather than individual Landsat scenes. Compositing made imagery generation
 more automated, reduced latency, and increased the mapping extent. Also, as of NLCD 2019, we
 divided CONUS into 50 blocks, each containing approximately 9 path/rows. For NLCD 2021 we
 also used synthetic Landsat imagery.</procdesc>
 cprocdate>2021
 cont>
   <cntinfo>
     <cntperp>
       <cntper>Jon Dewitz</cntper>
       <cntorg>U.S. Geological Survey, CORE SCIENCE SYSTEMS</cntorg>
     </cntperp>
     <cntpos>GEOGRAPHER</cntpos>
     <cntaddr>
       <addrtype>mailing address</addrtype>
       <address>47914 252Nd Street</address>
       <city>Sioux Falls</city>
       <state>SD</state>
       <postal>57198</postal>
       <country>US</country>
     </cntaddr>
     <cntvoice>605-594-2715</cntvoice>
     <cntemail>dewitz@usgs.gov</cntemail>
   </cntinfo>
 </proccont>
</procstep>
cstep>
 cdesc>Landsat composite imagery - Composites are generated using the method of Jin et al.
 (2023) (https://doi.org/10.34133/remotesensing.0022). Per-band median values are determined
 at each pixel location from valid (no cloud/shadow/snow/fill data in the pixel QA) pixels in
 an image stack. The observation with the shortest Euclidean distance to this median-value
 point in six-dimensional (six-band) space provides the values for each band for that pixel.
 For "leaf-on" (growing season) composite images, the range of dates used to query for
 eligible Landsat observations is May 1 to September 30, and for "leaf-off", November 1
 through April 1. These composites are generated across all Landsat optical bands (informally,
 the wavelength bands blue, green, red, NIR, SWIR1, and SWIR2; equivalently, the wavelength
 ranges for Landsat TM/ETM+ bands 1, 2, 3, 4, 5, and 7). We generated annual leaf-on
 composites from 2000 to 2021, and annual leaf-off composites from 2018 to 2021.
 cprocdate>2021
</procstep>
cstep>
 cdesc>Landsat synthetic imagery - Synthetic images are generated from a model of Landsat
 surface reflectance (or brightness temperature, etc.), analogous to the approach by Zhu et
 al. (2015) (https://doi.org/10.1016/j.rse.2015.02.009). Synthetic images in this case are
 derived from the LCMAP CCDC CONUS 1.3 harmonic models
 (https://www.usgs.gov/media/files/lcmap-collection-13-ccdc-add). Data is produced for the
 same six bands considered in composite generation—the thermal band harmonic model is not
 used. For NLCD 2021 we produced CONUS leaf-on synthetic imagery for 2000-2020 based on the
 July 1 date. In addition, we generated CONUS leaf-off synthetic imagery for 2018-2020 based
 on the November 15 date in the northern mapping areas and December 15th in the southern
 mapping areas. 
 cprocdate>2021
</procstep>
cdesc>Land cover classification (imagery) - In addition to Landsat imagery (leaf-on
 composite and leaf-off CCDC-synthetic), other datasets used as input into the land cover
 classification were: segmented-polygon-based mean of Landsat imagery, digital elevation data
 and derivatives (aspect, slope, and position index); forest disturbance year 1984-2021, 90th
 percentile and 20th percentile Normalized Difference Vegetation Index (NDVI), and 20th
 percentile Normalized Difference Water Index (NDWI). Landsat composites, synthetic images,
 and annual percentile spectral indices were created for leaf on and leaf off in 2019 and 2021
 based on NLCD block mapping units (generally 9 Landsat path/rows per block). The use of the
 same style change pairs ensures proper phenological matches and similar spectral properties.
```

```
It also reduces the overlap area between this type of imagery compared to individual Landsat
 path/row images. 
 cprocdate>2021
</procstep>
cstep>
 cdesc>Land cover classification (modeling change) - NLCD 2021 was produced by modeling
 land cover change over the time interval between 2019 and 2021. Models used included; the
 Multi-Index Integrated Change Analysis (MIICA) model
 (https://doi.org/10.1016/j.rse.2013.01.012), which captures change between two dates of
 imagery; the Time-Series method Using Normalized Spectral Distance (NSD) index (TSUN), which
 produces a forest land cover change disturbance year map; a water detection model, which
 captures water for each date of Landsat imagery; models that detect cultivated crop for each
 date Landsat imagery; and a time series model to detect cultivated crop change. Landsat
 imagery, ancillary data (see datasets listed under Source Information), the MIICA outputs,
 other change detection outputs, and the 1986 to 2021 disturbance year map (derived from our
 change detection procedures) comprise the training data. </procdesc>
 cprocdate>2021
</procstep>
cstep>
 cdesc>Land cover classification (training data and image segmentation) - The training
 dataset models were built with Landsat images and derived indices, spectral change products,
 trajectory analysis, and ancillary data, including previous years' NLCD land cover; LANDFIRE-
 EVH; CDL; NWI; cultivated cropland 2008 to 2021; MTBS fire year, NLCD tree canopy and RCMAP
 land cover. Image segmentation, using Ecognition, was performed on the synthetic and
 composite imagery, and the resulting image objects were used to mitigate noise in the
 training data. The final output of this stage is training data for each of the target years,
 used as input into the initial land cover classification stage. 
 cprocdate>2021
cstep>
 cdesc>Land cover classification (decision tree) - For each year of Landsat data, two
 percent of all available training data per NLCD block was drawn from the data as training
 samples with 5000 minimum samples and 1000000 maximum samples for each land cover class, and
 one percent was drawn as validation samples. The See5 decision tree classification software
 was run on the training samples to generate a set of rules, and the decision rules were
 applied to generate a land cover classification for each target year. The See5 classifier was
 run with five sets of independent variables: the 1986 to 2021 disturbance year map derived
 from our change detection procedures; the set of Landsat images; polygon-based (from image
 segmentation) mean of Landsat images; annual percentile spectral indices; and a DEM and
 derivatives. The See5 classification was run three times on each NLCD block: 1) with all land
 cover classes plus the 1986 to 2021 disturbance year data; 2) with urban and wetland classes
 omitted; and 3) with urban and wetland classes omitted, and without the disturbance year
 data, since these classes have separate process steps. Urban is directly derived from percent
 impervious, and wetland is derived from the postprocessing of integrating first
 classification, wetland potential index, change detection, and NLCD wetland base. Wetland
 potential index is derived from the NWI, hydric soil, and NLCD wetland classes. 
 cprocdate>2021
</procstep>
cstep>
 classification (U-net machine learning) - We also produced a Unet
 classification for the entire CONUS: inputs included NLCD2019 as training data, leaf-on
 composite and leaf-off synthetic Landsat imagery, and digital elevation data. 
 cprocdate>
</procstep>
cstep>
 cdesc>Land cover change refinement - A post-classification refinement process was used to
 refine the land cover change between NLCD 2019 and NLCD 2021. We checked for consistency of
 land cover labels between 2019 and 2021; and compared the classification change with imagery-
 based change detection, ancillary data, and NLCD 2019. Additional refinement was conducted
 class-by-class in hierarchical order: 1) water; 2) wetlands; 3) forest and forest transition;
 4) rangeland shrubland, herbaceous, and barren, and 5) agriculture. Models were developed for
 refinement of each class and each type of confusion. 
 cprocdate>2021
</procstep>
cstep>
```

1/26/24, 2:13 PM nlcd_l48_v1.xml

label issues pertinent to local environments and boundary pixels, and ensured that all pixels in a segmentation object were in the same class. Developed classes were derived from percent developed impervious surface. Pixel-based and object-based land cover labels were checked for differences, and were reconciled by a rule-based model. Water and developed classes were left intact in areas that were smaller than segmentation objects. Change trajectories for each class were checked for consistency through all years. cprocdate>2021 </procstep> </lineage> </dataqual> <spdoinfo> <direct>Raster</direct> <rastinfo> <rasttype>Grid Cell</rasttype> <re><rowcount>104424</re> <colcount>161190</colcount> <vrtcount>1 </rastinfo> </spdoinfo> <spref> <horizsys> <planar> <mapproj> <mapprojn>Albers Conical Equal Area/mapprojn> <albers> <stdparll>29.5</stdparll> <stdparll>45.5</stdparll> <longcm>-96.0</longcm> <latprjo>23.0</latprjo> <feast>0.0</feast> <fnorth>0.0</fnorth> </albers> </mapproj> <planci> <plance>row and column</plance> <coordrep> <absres>30.0</absres> <ordres>30.0</ordres> </coordrep> <plandu>meters</plandu> </planci> </planar> <geodetic> <horizdn>WGS 1984/horizdn> <ellips>WGS 84</ellips> <semiaxis>6378137.0</semiaxis> <denflat>298.257223563</denflat> </geodetic> </horizsys> </spref> <eainfo> <detailed> <enttyp> <enttypl>NLCD Land Cover Layer Attribute Table</enttypl> <enttypd>Land Cover class counts and descriptions for the NLCD Land Cover Database/enttypd> <enttypds>National Land Cover Database</enttypds> </enttyp> <attr> <attrlabl>OID</attrlabl> <attrdef>Internal feature number.</attrdef> <attrdefs>ESRI</attrdefs> <attrdomv> <udom>Sequential unique whole numbers that are automatically generated.</udom> </attrdomv>

cdesc>Land cover classification integration - The final integration step resolved class

```
</attr>
<attr>
  <attrlabl>Count</attrlabl>
  <attrdef>A nominal integer value that designates the number of pixels that have each value in
  the file; histogram column in ERDAS Imagine raster attributes table.</attrdef>
  <attrdefs>ESRI</attrdefs>
  <attrdomv>
   <udom>Integer</udom>
  </attrdomv>
</attr>
<attr>
  <attrlabl>NLCD Land Cover Class</attrlabl>
  <attrdef>Land Cover Class Code Value.</attrdef>
  <attrdeefs>NLCD Legend Land Cover Class Descriptions</attrdefs>
  <attrdomv>
   <edom>
     <edomv>0</edomv>
     <edomvd>Unclassified</edomvd>
     <edomvds>Producer defined</edomvds>
   </edom>
  </attrdomv>
  <attrdomv>
   <edom>
     <edomv>11</edomv>
     <edomvd>Open Water - All areas of open water, generally with less than 25% cover or
     vegetation or soil.</edomvd>
     <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
   </edom>
  </attrdomv>
  <attrdomv>
   <edom>
     <edomv>12</edomv>
     <edomvd>Perennial Ice/Snow - All areas characterized by a perennial cover of ice and/or
     snow, generally greater than 25% of total cover.</edomvd>
     <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
   </edom>
  </attrdomv>
  <attrdomv>
   <edom>
     <edomv>21</edomv>
     <edomvd>Developed, Open Space - Includes areas with a mixture of some constructed
     materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account
     for less than 20 percent of total cover. These areas most commonly include large-lot
     single-family housing units, parks, golf courses, and vegetation planted in developed
     settings for recreation, erosion control, or aesthetic purposes.</edomvd>
     <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
   </edom>
  </attrdomv>
  <attrdomv>
   <edom>
     <edomv>22</edomv>
     <edomvd>Developed, Low Intensity -Includes areas with a mixture of constructed materials
     and vegetation. Impervious surfaces account for 20-49 percent of total cover. These areas
     most commonly include single-family housing units.</edomvd>
     <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
   </edom>
  </attrdomy>
  <attrdomv>
   <edom>
     <edomv>23</edomv>
     <edomvd>Developed, Medium Intensity - Includes areas with a mixture of constructed
     materials and vegetation. Impervious surfaces account for 50-79 percent of the total
     cover. These areas most commonly include single-family housing units.</edomvd>
     <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
   </edom>
```

```
</attrdomv>
<attrdomv>
 <edom>
   <edomv>24</edomv>
   <edomvd>Developed, High Intensity - Includes highly developed areas where people reside
   or work in high numbers. Examples include apartment complexes, row houses and
   commercial/industrial. Impervious surfaces account for 80 to 100 percent of the total
   cover.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomy>
<attrdomv>
 <edom>
   <edomv>31</edomv>
   <edomvd>Barren Land (Rock/Sand/Clay) - Barren areas of bedrock, desert pavement, scarps,
   talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits
   and other accumulations of earthen material. Generally, vegetation accounts for less than
   15% of total cover.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>41</edomv>
   <edomvd>Deciduous Forest - Areas dominated by trees generally greater than 5 meters tall,
   and greater than 20% of total vegetation cover. More than 75 percent of the tree species
   shed foliage simultaneously in response to seasonal change.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomy>
<attrdomv>
 <edom>
   <edomv>42</edomv>
   <edomvd>Evergreen Forest - Areas dominated by trees generally greater than 5 meters tall,
   and greater than 20% of total vegetation cover. More than 75 percent of the tree species
   maintain their leaves all year. Canopy is never without green foliage.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>43</edomv>
   <edomvd>Mixed Forest - Areas dominated by trees generally greater than 5 meters tall, and
   greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are
   greater than 75 percent of total tree cover.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>51</edomv>
   <edomvd>Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall
   with shrub canopy typically greater than 20% of total vegetation. This type is often co-
   associated with grasses, sedges, herbs, and non-vascular vegetation.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomy>
<attrdomv>
 <edom>
   <edomv>52</edomv>
   <edomvd>Shrub/Scrub - Areas dominated by shrubs; less than 5 meters tall with shrub
   canopy typically greater than 20% of total vegetation. This class includes true shrubs,
   young trees in an early successional stage or trees stunted from environmental
   conditions.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
```

```
</edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>71</edomv>
   <edomvd>Grassland/Herbaceous - Areas dominated by grammanoid or herbaceous vegetation,
   generally greater than 80% of total vegetation. These areas are not subject to intensive
   management such as tilling, but can be utilized for grazing.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomy>
<attrdomv>
 <edom>
   <edomv>72</edomv>
   <edomvd>Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally
   greater than 80% of total vegetation. This type can occur with significant other grasses
   or other grass like plants, and includes sedge tundra, and sedge tussock tundra.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>73</edomv>
   <edomvd>Lichens - Alaska only areas dominated by fruticose or foliose lichens generally
   greater than 80% of total vegetation.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions/edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>74</edomv>
   <edomvd>Moss - Alaska only areas dominated by mosses, generally greater than 80% of total
   vegetation.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>81</edomv>
   <edomvd>Pasture/Hay - Areas of grasses, legumes, or grass-legume mixtures planted for
   livestock grazing or the production of seed or hay crops, typically on a perennial cycle.
   Pasture/hay vegetation accounts for greater than 20 percent of total vegetation.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>82</edomv>
   <edomvd>Cultivated Crops - Areas used for the production of annual crops, such as corn,
   soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as
   orchards and vineyards. Crop vegetation accounts for greater than 20 percent of total
   vegetation. This class also includes all land being actively tilled.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
 <edom>
   <edomv>90</edomv>
   <edomvd>Woody Wetlands - Areas where forest or shrub land vegetation accounts for greater
   than 20 percent of vegetative cover and the soil or substrate is periodically saturated
   with or covered with water.</edomvd>
   <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
 </edom>
</attrdomv>
<attrdomv>
```

```
<edom>
     <edomv>95</edomv>
     <edomvd>Emergent Herbaceous Wetlands - Areas where perennial herbaceous vegetation
     accounts for greater than 80 percent of vegetative cover and the soil or substrate is
     periodically saturated with or covered with water.</edomvd>
     <edomvds>NLCD Legend Land Cover Class Descriptions</edomvds>
   </edom>
  </attrdomv>
</attr>
<attr>
  <attrlabl>Red</attrlabl>
  <attrdef>Red color code for RGB. The value is arbitrarily assigned by the display software
  package, unless defined by user.</attrdef>
  <attrdefs>NLCD 2021</attrdefs>
  <attrdomv>
   <rdom>
     <rdommin>0</rdommin>
     <rdommax>255</rdommax>
   </rdom>
  </attrdomv>
</attr>
<attr>
  <attrlabl>Green</attrlabl>
  <attrdef>Green color code for RGB. The value is arbitrarily assigned by the display software
  package, unless defined by user.</attrdef>
  <attrdefs>NLCD 2021</attrdefs>
  <attrdomv>
   <rdom>
     <rdommin>0</rdommin>
     <rdommax>255</rdommax>
   </rdom>
  </attrdomv>
</attr>
<attr>
  <attrlabl>Blue</attrlabl>
  <attrdef>Blue color code for RGB. The value is arbitrarily assigned by the display software
  package, unless defined by user.</attrdef>
  <attrdefs>NLCD 2021</attrdefs>
  <attrdomv>
   <rdom>
     <rdommin>0</rdommin>
     <rdommax>255</rdommax>
   </rdom>
  </attrdomv>
</attr>
<attr>
  <attrlabl>Opacity</attrlabl>
  <attrdef>A measure of how opaque, or solid, a color is displayed in a layer.</attrdef>
  <attrdefs>NLCD 2021</attrdefs>
  <attrdomv>
   <rdom>
     <rdommin>0</rdommin>
     <rdommax>0.1</rdommax>
     <attrmres>0.01</attrmres>
   </rdom>
  </attrdomv>
</attr>
<attr>
  <attrlabl>Value</attrlabl>
  <attrdef>*while the file structure shows values in range from 0-255, the values of 0-100 are
 the only real populated values, in addition to a background value of 127.</attrdef>
  <attrdefs>NLCD 2021</attrdefs>
  <attrdomv>
   <edom>
     <edomv>127</edomv>
```

```
<edomvd>Background value</edomvd>
         <edomvds>Producer defined</edomvds>
       </edom>
     </attrdomv>
     <attrdomv>
       <rdom>
         <rdommin>0</rdommin>
         <rdommax>100</rdommax>
        <attrunit>percentage</attrunit>
         <attrmres>0.1</attrmres>
       </rdom>
     </attrdomv>
   </attr>
 </detailed>
 <overview>
   <eaover>Land Cover Class RGB Color Value Table. The specific RGB values for the NLCD Land Cover
   Class's that were used for NLCD 2021. </eaover>
   <eadetcit>Attributes defined by USGS and ESRI. Value Red Green Blue 0 0 0 0 11 70 107 159 12
   209 222 248 21 222 197 197 22 217 146 130 23 235 0 0 24 171 0 0 31 179 172 159 41 104 171 95 42
   28 95 44 43 181 197 143 52 204 184 121 71 223 223 194 81 220 217 57 82 171 108 40 90 184 217
   235 95 108 159 184</eadetcit>
 </overview>
</eainfo>
<distinfo>
 <distrib>
   <cntinfo>
     <cntorgp>
       <cntorg>U.S. Geological Survey</cntorg>
       <cntper>GS ScienceBase
     </cntorgp>
     <cntaddr>
       <addrtype>mailing address</addrtype>
       <address>Denver Federal Center, Building 810, Mail Stop 302</address>
       <city>Denver</city>
       <state>CO</state>
       <postal>80225</postal>
       <country>United States</country>
     </cntaddr>
     <cntvoice>1-888-275-8747</cntvoice>
     <cntemail>sciencebase@usgs.gov</cntemail>
   </cntinfo>
 </distrib>
 <distliab>Unless otherwise stated, all data, metadata and related materials are considered to
 satisfy the quality standards relative to the purpose for which the data were collected. Although
 these data and associated metadata have been reviewed for accuracy and completeness and approved
 for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made
 regarding the display or utility of the data for other purposes, nor on all computer systems, nor
 shall the act of distribution constitute any such warranty.</distliab>
 <stdorder>
   <digform>
     <digtinfo>
       <formname>ERDAS</formname>
       <formvern>Imagine 2018</formvern>
       <formspec>.img</formspec>
       <transize>1012.0</transize>
     </digtinfo>
     <digtopt>
       <onlinopt>
        <computer>
            <networkr>https://doi.org/10.5066/P9JZ7A03</networkr>
          </networka>
         </computer>
       </onlinopt>
     </digtopt>
```

```
</digform>
     <fees>None</fees>
   </stdorder>
   <techpreq>ESRI ArcGIS Pro software and supporting operating systems.</techpreq>
 </distinfo>
  <metainfo>
   <metd>20230711</metd>
   <metc>
     <cntinfo>
       <cntorgp>
         <cntorg>U.S. Geological Survey</cntorg>
       </cntorgp>
       <cntpos>Customer Service Representative</cntpos>
       <cntaddr>
         <addrtype>mailing and physical</addrtype>
         <address>47914 252nd Street</address>
         <city>Sioux Falls</city>
         <state>SD</state>
         <postal>57198-0001</postal>
         <country>USA</country>
       </cntaddr>
       <cntvoice>(605) 594-6151</cntvoice>
       <cntfax>605/594-6589</cntfax>
       <cntemail>custserv@usgs.gov</cntemail>
     </cntinfo>
   </metc>
   <metstdn>FGDC Content Standard for Digital Geospatial Metadata</metstdn>
   <metstdv>FGDC-STD-001-1998</metstdv>
   <mettc>local time</mettc>
 </metainfo>
</metadata>
```